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Характеристики кода

ПМ Лазурит

сжимаемые течения: дозвук – сверхзвук, аэроакустика

RANS, URANS, RANS/ILES

структурированные многоблочные криволинейные сетки,
импорт сеток и граничных условий из CFD-GEOM, ручное
построение сеток и задание граничных условий

Конечно-объемные
Переменные: физические
Порядок аппроксимации по пространству 1-9 для
предраспадных параметров в схеме Роу

неявная схема (dual time stepping)

OpenMP-MPI

FORTRAN

Название кода:

Что моделируется (классы течений):

Моделирование турбулентных течений:

Сетки и сеточные технологии:

Численные методы:

Интегрирование по времени:

Ускорение вычислений:

Язык программирования:
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Где что заявлено

• Свидетельство о государственной регистрации программы для ЭВМ №2020615925 Российская федерация. «Программный

модуль компьютерного моделирования на основе уравнений RANS/ILES» («Лазурит RANS-ILES»): опубликовано 04.07.2020 /

Д.А. Любимов, Л.А. Бендерский; правообладатель ФАУ «ЦИАМ им. П.И. Баранова».

• Свидетельство о государственной регистрации программы для ЭВМ № № 2023666963 Российская федерация.

«Программный модуль компьютерного моделирования физических процессов в авиационных силовых установках»

(«Лазурит»): опубликовано 08.08.2023 / Любимов Д.А., Бендерский Л.А.; правообладатель ФАУ «ЦИАМ им. П.И. Баранова».

• Свидетельство о государственной регистрации программы для ЭВМ №2025681475 Российская федерация. «Лазурит 25»:

дата регистрации 14.08.2025 / Д.А. Любимов, Л.А. Бендерский, Р.Ш. Аюпов, А.С. Жигалкин; правообладатель ФАУ «ЦИАМ им.

П.И. Баранова».

• Комбинированные вихреразрешающие подходы, описанные в статьях [1] и [2] соответственно. Различаются способом

переключения RANS/ILES. В ПМ Lazurit RANS/ILES переключение, аналогично DES: по размеру текущей ячейки и ее

расстоянию до стенки. В ПМ Lazurit RANS/ILES(i) не только по размеру ячейки, но и по параметрам течения в ней,

подобно тому, как это сделано в IDDES.

• Версия RANS/ILES(i) с пониженной схемной диффузией при дозвуковых числах Маха описана в статье [3].

• В области RANS у стенок для замыкания используется модель SA. Для аппроксимации конвективных членов в

уравнениях Н-С доступны сохраняющие монотонность схемы МР5 и МР9, в скалярных уравнениях используется

WENO5.

1. Любимов, Д. А. Разработка и применение метода высокого разрешения для расчета струйных течений методом крупных вихрей / Д. А. Любимов
// ТВТ. – 2012. – Т. 50, вып. 3. – С. 450–466.

2. Любимов, Д. А. Исследование RANS/ILES-методом течения в высокоскоростном воздухозаборнике смешанного сжатия на различных режимах
работы / Д. А. Любимов, А. О. Честных // ТВТ. – 2018. – Т. 56, вып. 5. – С. 729–737.

3. А. С. Жигалкин, Д. А. Любимов. Улучшение разрешения RANS/ILES(i) методом турбулентных вихревых структур при дозвуковых числах Маха // ТВТ,
2025. Т. 63. №1, с. 57-67.



Central Institute of Aviation Motors named after P.I. BaranovЦентральный институт авиационного моторостроения имени П.И. Баранова 4

Моделирование RANS/ILES(i) методом погранслоя на 
плоской пластине без градиента давления при 

различных числах Маха
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Цели работы

• Основная цель: оценка точности расчетов RANS/ILES(i) методом [1, 2] пограничного слоя на грубых сетках. Для

этого проведены расчеты погранслоя на пластине при относительно больших величинах пристеночного шага

расчетной сетки при числах Маха в свободном потоке M∞= 2 и M∞= 0.5.

• Оценка точности предсказания с помощью RANS/ILES(i) метода [1, 2] уровня трения на пластине, а также

распределений осредненных и пульсационных параметров течения поперек пограничного слоя (ПС).

• Точность расчета оценивается сравнением с “эталонными” результатами, в качестве которых используются

данные работы [3], которой где проведено моделирование методом DNS ПС на плоской пластине с нулевым

градиентом давления в широком диапазоне чисел Маха свободного потока M∞ (от 0.3 до 2.5) и широком

диапазоне чисел Рейнольдса.

• Определение длины переходной зоны с пониженным уровнем трения, возникающей около входа в расчетную

область при задании на входе синтетическую турбулентности.

1. Любимов, Д. А. Исследование RANS/ILES-методом течения в высокоскоростном воздухозаборнике
смешанного сжатия на различных режимах работы / Д. А. Любимов, А. О. Честных // ТВТ. – 2018. –
Т. 56, вып. 5. – С. 729–737.

2. Д. А.. Улучшение разрешения RANS/ILES(i) методом турбулентных вихревых структур при
дозвуковых числах маха/ А. С. Жигалкин, Д. А. Любимов // ТВТ. - 2025. - Т. 63, № 1, - С. 57-67.

3. DNS of compressible turbulent boundary layers and assessment of data-/scaling-law quality / C. Wenzel, 
B. Selent, M. Kloker, U. Rist // J. Fluid Mech. – 2018.
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Постановка задачи и граничные условия (1)
• Моделирование развивающего турбулентного ПС на плоской пластине

осуществляется на прямоугольной расчетной сетке в области, имеющей форму
прямоугольного параллелепипеда.

• Расчеты проведены для M∞=0.5 и M∞=2. Температура и плотность в набегающем
потоке задавались такими же, как в работе [1]: T∞=288.15 К и ρ∞=1.225 кг/м3.

• На нижней границе расчетной области задавалось условие адиабатической стенки.
• На боковых - условие периодичности.
• На выходной границе при сверхзвуковом потоке параметры течения

экстраполировались изнутри расчетной области. В расчетах с M∞=0.5 задавалось
статическое давление набегающего потока p∞.

• На верхней границе задавалось граничное условие на основе инвариантов Римана [2].
• На входной границе задавались распределения давления, температуры и осредненной продольной скорости,

рассчитанные на основе приближенной модели сжимаемого ПС на плоской пластине, основанной на концепции
эффективной скорости Ван Дриста [3, 4].

• К профилю осредненной скорости добавлялись пульсации скорости, сгенерированные методом синтетических
вихрей (SEM) [5]. Линейный масштаб турбулентности задавался постоянным и равным 0.15δ99,t, где δ99,t – толщина
погранслоя в целевом сечении Reτ=252. Для напряжений Рейнольдса использовалось неравномерное вертикальное
распределение из сечения Reτ=252 “эталонного” расчета [1].

1. DNS of compressible turbulent boundary layers and assessment of data-/scaling-law quality / C. Wenzel, B. Selent, M. Kloker, U. Rist // J. Fluid Mech. – 2018.
2. Carlson, J.-R. Inflow/Outflow Boundary Conditions with Application to FUN3D: NASA Technical Memorandum NASA/TM–2011-217181 / J.-R. Carlson. – NASA, 

2011. – 32 pp.
3. White, F. M. Viscous Fluid Flow / F. M. White. – 2nd edition. – McGraw-Hill, Inc., 1991. – 614 p.
4. Van Driest, E. R. Turbulent Boundary Layer in Compressible Fluids / E. R. Van Driest // Journal of the Aeronautical Sciences. – 1951. – V. 18, № 3. – P. 1012-1028.
5. Jarrin, N. Synthetic inflow boundary conditions for the numerical simulation of turbulence: PhD thesis / Jarrin Nicolas; The University of Manchester. – 

Manchester, United Kingdom, 2008. – 258 pp.
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Постановка задачи (2)

• Длина расчетной области определялась таким образом, чтобы целевое сечение Reτ=252 гарантированно

находилось между входной и выходной границей расчетной области на некотором удалении от них. Распределение

параметров ПС по длине заранее неизвестно, поэтому для задания длины расчетной области, как и для задания

граничного условия на входе, использовалась приближенная модель на основе концепции эффективной скорости

Ван Дриста [1, 2] (далее VD1).

• Длина расчетной области задавалась набором из двух значений Δ𝑅𝑒𝜃,1 = 𝑅𝑒𝜃,𝑡 − 𝑅𝑒𝜃,1 и Δ𝑅𝑒𝜃,2 = 𝑅𝑒𝜃,2 − 𝑅𝑒𝜃,𝑡,

где 𝑅𝑒𝜃,𝑡, 𝑅𝑒𝜃,1, 𝑅𝑒𝜃,2 - числа Рейнольдса соответственно в целевом, входном и выходном сечениях.

• Шаг по времени задавался в безразмерном виде Δ ҧ𝑡 = Δ𝑡𝑢𝑒/𝛿99,1, где ue – скорость свободного потока, δ99,1 –

толщина погранслоя в сечении входа. Расчеты проведены для одного значения Δ ҧ𝑡 : 0.085.

• Поля основных параметров течения осреднялись по времени. Осреднение начиналось через промежуток

времени 𝑇𝑎𝑣.𝑠𝑡𝑎𝑟𝑡 = (4…6)𝐿/𝑢𝑒 (где L – длина расчетной области) с момента начала расчета, и продолжалось в

течении 𝑇𝑎𝑣 = (12…20)𝐿/𝑢𝑒.

• После осреднения по времени осуществлялось пространственное осреднение в поперечном направлении.

1. White, F. M. Viscous Fluid Flow / F. M. White. – 2nd edition. – McGraw-Hill, Inc., 1991. 
– 614 p.

2. Van Driest, E. R. Turbulent Boundary Layer in Compressible Fluids / E. R. Van Driest // 
Journal of the Aeronautical Sciences. – 1951. – V. 18, № 3. – P. 1012-1028.
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Основные параметры расчетов для Me=2

№ Метод (Lx×Ly×Lz)δ99,t ΔReθ,1 ΔReθ,2 Δx/δ99,t Δx+ Δz+ 𝚫 ҧ𝒕 Δymin/δ99,t Δy+
min Δy+

max Nx×Ny×Nz NΣ×10-6

1 RANS/ILES(i) 38×5×5 480 90 0.164 45 15 0.085 0.022 6 27.6 231×80×92 1.70

2 RANS/ILES(i) 49×5×5 680 90 0.155 45 15 0.085 0.021 6 27.6 313×84×97 2.55

3 RANS/ILES(i) 38×5×5 480 90 0.164 45 15 0.085 0.044 12 27.6 231×66×92 1.40

4 RANS/ILES(i) 49×5×5 680 90 0.155 45 15 0.085 0.041 12 27.6 313×70×97 2.13

5 RANS/ILES(i) 54×5×5 800 90 0.147 45 15 0.085 0.039 12 27.6 367×73×103 2.76

6 RANS/ILES(i) 38×7×7 480 70 0.164 45 15 0.085 0.003 0.85 27.6 231×173×128 5.12

7 ILES 31×5×5 390 70 0.056 15 5 0.085 0.001 0.63 20.4 558×164×264 24.16

В литературе шаги сетки (Δx+, Δy+ и Δz+) применительно к рассматриваемой задаче как правило выражают в единицах закона стенки,

определенным по параметрам погранслоя во входном сечении. Также сделано и в настоящей работе. При переменном положении

входного сечения (как здесь из-за изменения длины расчетной области) величина трения в нем изменяется. В результате величина шагов

в физических единицах при перемещении входного сечения вниз по течению несколько уменьшается, что приводит к некоторому

дополнительному сгущению сетки. Это видно по данным, приведенным в таблице: увеличение длины расчетной области с 38δ99,t до 54δ99,t

за счет смещения входного сечения привело к росту числа ячеек Ny и Nz c 66 и 92 до, соответственно, 73 и 103, т.е. где-то на 11%. Хотя

шаги сетки уменьшаются в заметно меньшей пропорции, чем растет длина, тем не менее, данное обстоятельство может быть одним из

факторов, обуславливающих некоторые полученные в расчетах эффекты, возникающие при удлинении расчетной области (например,

сокращение переходной области).
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Влияние величины пристеночного шага. Изоповерхности Q-критерия 
Q= 5×1012 1/с2. 

RANS/ILES(i)-3, (38×5×5) δ99,t, 
Δy+

min=12, NΣ=1.40×106
RANS/ILES(i)-1, (38×5×5) δ99,t, 

Δy+
min=6, NΣ=1.70×106

ILES(i)-7, (31×5×5) δ99,t, 
Δy+

min=0.63, NΣ=24.16×106

Увеличение Δy+
min до 6 ведет к некоторому увеличению переходной зоны и небольшому уменьшению числа

вихревых структур. При Δy+
min=12 число вихревых структур становится еще меньше, а длина переходной зоны

растет.

RANS/ILES(i)-6, (38×7×7) δ99,t, 
Δy+

min=0.85, NΣ=5.1×106
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Влияние длины расчетной области при Δy+
min=12. Изоповерхности Q-

критерия Q=5×1012 1/с2. 

RANS/ILES(i)-5, (54×5×5) δ99,t, 
NΣ=2.76×106

RANS/ILES(i)-4, (49×5×5) δ99,t, 
NΣ=2.13×106

RANS/ILES(i)-3, (38×5×5) δ99,t, 
NΣ=1.40×106

Увеличение длины расчетной ведет к росту числа вихревых структур и уменьшению переходной зоны.
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Влияние величины пристеночного шага на основные параметры ПС 

Коэффициент трения Профили пульсаций компонент скорости в сечении Reτ=252

Профиль осредненной скорости

• Во всех приведенных RANS/ILES(i) расчетах происходит восстановление трения.
• При Δy+

w=12 длина восстановления трения наибольшая: ΔRex≈420 ×103 против ΔRex≈300 ×103 в расчетах при
Δy+

w=6 и Δy+
w=0.85. В целевом сечении трение полностью не восстановлено.

• При Δy+
w=6 трение восстанавливается почти также, как и при Δy+=0.85, но после восстановления cf оказывается

завышенным: в целевом сечении cf равен 3.45×10-3 при Δy+
w=6 и 3.30×10-3 при Δy+

w=0.85.

Кружками на графиках для расчетов методом
RANS/ILES(i) указано место переключения
между ветками RANS и ILES. Во всех расчетах
оно расположено при y+=40.

Кружками обозначено положение сечения Reτ=252

Распределение Reδ99
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Влияние длины расчетной области при Δy+
min=12 на основные параметры ПС 

Коэффициент трения Профили пульсаций компонент скорости в сечении Reτ=252

Профиль осредненной скорости

• Во всех приведенных RANS/ILES(i) расчетах происходит восстановление трения. После восстановления значения cf во
всех RANS/ILES(i) расчетах превышают значения cf в ILES расчете № 7 на 0.2×10-3 (6% от cf в ILES расчете № 7 в
целевом сечении ). При этом по мере удаления от целевого сечения величина cf в RANS/ILES(i) расчетах приближается к
ее величине в расчете ILES.

• В расчете № 3 целевое сечение попало в конец переходной зоны. Величина cf в нем оказалась меньше, чем в расчетах №
4 и № 5 на 0.25×10-3 (7 %), а само целевое сечение оказалось расположенным дальше, чем в расчетах № 4 и № 5.

• В расчетах № 4 и № 5 величина переходной зоны достигает ΔRex≈340×103 и ΔRex≈370×103, а в расчете № 3 - ΔRex≈420×103

Кружками на графиках для расчетов методом
RANS/ILES(i) указано место переключения
между ветками RANS и ILES. Во всех расчетах
оно расположено при y+=40.

Кружками обозначено положение сечения Reτ=252

Reτ
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Выводы

• Результаты ILES расчета оказались близки к результатам DNS: профиль скорости и распределение пульсаций v’ в

контрольном сечении практически совпали с данными DNS, пик на распределении пульсаций u’ в ILES расчетах

превышает результаты DNS на 4%.

• При использовании грубых сеток удалось добиться относительно неплохой точности предсказания параметров

погранслоя. Например, расчете № 4 с Δy+
w=12 и NΣ=2.13×106 величина cf в контрольном сечении оказалась на 6 %

больше, чем в ILES расчете с NΣ=24.16×106, а по направлению к выходу разница в cf сократилась до 3 %.

• Точность предсказания уровня пульсаций в ILES области (y+>40) в RANS/ILES(i) расчетах также оказалась вполне

приемлемой. На участке y+>200 уровень пульсаций обоих компонент скорости почти совпадает с ILES расчетом и

результатами DNS, а уровень пульсаций поперечной компоненты скорости совпадает с результатами ILES вплоть

до y+=200.

• Пик пульсаций u’ в RANS/ILES(i) расчетах с Δy+
w=12 составляет 70-75% от ILES расчета и смещен в точку y+=50, (а

в ILES он расположен в точке y+=12) .

• Структура крупных вихрей в погранслое, полученная в RANS/ILES(i) расчетах, качественно близка к полученной в

ILES расчете, хотя и число мелких вихрей в RANS/ILES(i) расчетах существенно меньше.

• При увеличении Δy+
w до 12 длина переходной области возрастает до ΔRex≈420×103 при ΔRex≈300×103 в расчетах

при Δy+
w=6 и Δy+

w=0.85..

• Переходная зона при Δy+
w=12 сокращается с увеличением длины: ΔRex≈420×103 при 38δ99,t, ΔRex≈370×103 при

49δ99,t и ΔRex≈340×103 при 54δ99,t.
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Основные параметры расчетов для Me=0.5

№ Метод (Lx×Ly×Lz)δ99,t ΔReθ,1 ΔReθ,2 Δx/δ99,t Δx+ Δz+ 𝚫 ҧ𝒕 Δymin/δ99,t Δy+
min Δy+

max Nx×Ny×Nz NΣ×10-6 Сm

1 RANS/ILES(i) 49×7×7 440 110 0.198 60 20 0.085 0.003 0.85 52 244×114×106 2.95 0.2

2 RANS/ILES(i) 44×5×5 390 100 0.206 60 20 0.085 0.003 0.85 52 214×79×73 1.23 0.2

3 RANS/ILES(i) 44×5×5 390 100 0.137 40 15 0.085 0.003 0.85 52 320×79×112 2.83 0.2

4 RANS/ILES(i) 44×5×5 390 100 0.206 60 20 0.085 0.003 0.85 52 214×79×73 1.23 0.1

5 RANS/ILES(i) 44×5×5 390 100 0.206 60 20 0.085 0.003 0.85 52 214×79×73 1.23 1.0
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Роль коэффициента Cm

В RANS/ILES(i) [1] методе аппроксимация конвективных потоков осуществляется с помощью модификации метода Роу [2] с

пониженной схемной вязкостью, в которой формула для вычисления конвективных потоков имеет вид:

fi+1/2 = ½[f(qL)+f(qR)] – ½Fsum|A|(qR – qL).

Для предраспадных параметров qL и qR на гранях ячеек использована сохраняющая монотонность схема 9-го порядка МР-9

[3]. Fsum ≤ 1 - функция от числа Маха, уменьшающая величину диффузионного члена в области ILES при M<1 [1].

Функция Fsum определена на основе двух других функций: Fsum=max(Fmloc, Fom).

Первая из них - Fmloc - обеспечивает снижение коэффициента Fsum в дозвуковых областях зоны ILES до значений меньших 1,

но больших заданного коэффициента Cm: Fmloc=Cm+(1-Cm)(1-(1-min(1,Mloc))
2.2)8, где Mloc=min(1,M), Cm=0.1-1.

Вторая функция Fom=1+(Com-1)min(1,(|Ω|/Coref), Сом=Сm, Coref=0.1-0.8 (в настоящих расчетах Coref=0.1) позволяет избежать

уменьшения схемной вязкости при малой завихренности Ω.

В области RANS снижения схемной вязкости не требуется и Fsum=1. Это достигается модификацией Mloc:

Mloc=min(1,M) при dmod=dref, Mloc=1 при dmod>dref

Подробно выбор вида функции Fsum , а также процесс калибровки входящих в ее состав констант, описан в работе [1].

1. А. С. Жигалкин, Д. А. Любимов. Улучшение разрешения RANS/ILES(i) методом турбулентных вихревых структур при дозвуковых числах Маха // ТВТ, 2025. Т. 63. №1, с. 57-
67.

2. P. L. Roe. Approximate Riemann Solvers, Parameters Vectors, and Difference Schemes // J. Comp. Phys, 1981, v. 43, p. 357-372.
3. A. Suresh, H. T. Huynh. Accurate Monotonicity—Preserving Schemes with Runge-Kutta Time Stepping // J. of Comp. Phys, 1997, v. 136, № 1, p. 83-99
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Влияние размера расчетной области и шага сетки. Изоповерхности Q-
критерия Q=5×1010 1/с2. 

RANS/ILES(i)-3, (44×5×5)δ99,t, 

Δx+=40, NΣ=2.83×106

RANS/ILES(i)-2, (44×5×5)δ99,t, 

Δx+=60, NΣ=1.23×106

RANS/ILES(i)-1, (49×7×7)δ99,t, 

Δx+=60, NΣ=2.95×106

• Уменьшение Δx+ с 60 до 40 приводит к существенному росту числа вихревых структур, а также сокращению

переходной зоны

• Увеличение размеров расчетной области с (44×5×5)δ99,t до (49×7×7)δ99,t при постоянном Δx+ привело к

небольшому сокращению длины переходной зоны.
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Влияние Cm. Изоповерхности Q-критерия Q=5×1012 1/с2. 

• Уменьшение Cm с 1.0 до 0.1 приводит к росту числа мелких вихревых структур, а также сокращению переходной

зоны.

RANS/ILES(i)-5, Cm=1.0RANS/ILES(i)-4, Cm=0.1RANS/ILES(i)-2, Cm=0.2

(44×5×5)δ99,t, Δx+=60, NΣ=1.23×106 



Central Institute of Aviation Motors named after P.I. BaranovЦентральный институт авиационного моторостроения имени П.И. Баранова 18

Влияние размера расчетной области и шагов сетки Δx+ и Δz+ на основные 
параметры ПС 

Коэффициент трения Профили пульсаций компонент скорости в сечении Reτ=252

Профиль осредненной скорости Кружками на графиках для расчетов методом
RANS/ILES(i) указано место переключения
между ветками RANS и ILES. При Δx+=60 оно в
расположено при y+=50; а при Δx+=40 оно в
расположено при y+=30.

Кружками обозначено положение сечения Reτ=252

• Восстановление трения происходит во всех расчетах. Увеличение размеров расчетной области с (44×5×5)δ99,t до
(49×7×7)δ99,t дало уменьшение длины переходной зоны ΔRex с 200×103 до 180×103 в расчетах № 2 и № 1
соответственно.

• Уменьшение шагов расчетной сетки Δx+ и Δz+ c 60 и 20 в расчете № 2 до 40 и 15 в расчете № 3 привело к
уменьшению переходной зоны ΔRex с 200×103 110×103.

• В расчетах № 1 и № 2 величина cf после восстановления оказалась выше, чем в расчете № 3 на (0.15-0.2)×10-3

(3.5-4.5% от величины cf в целевом сечении в расчете № 3).

Распределение Reδ99
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Влияние Cm на основные параметры ПС 

Коэффициент трения Профили пульсаций компонент скорости в сечении Reτ=252

Профиль осредненной скорости Кружками на графиках для расчетов методом
RANS/ILES(i) указано место переключения
между ветками RANS и ILES. Во всех расчетах
оно расположено при y+=50.

Кружками обозначено положение сечения Reτ=252

• Уменьшение Cm на выбранном расчетном режиме не оказало существенного влияния на длину зоны восстановления трения. Во всех расчетах она составила

ΔRex=200×103.

• При величине Cm =0.1 в расчете № 4 минимальное значение cf в переходной зоне составило 81 % от значения cf в целевом сечении, а в расчете № 5 при Cm =1.0 –

77 %.
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Выводы

• Увеличение размеров расчетной области с (44×5×5)δ99,t в расчете № 2 до (49×7×7)δ99,t в расчете № 1 привело к

уменьшению длины переходной зоны ΔRex с 200×103 до 180×103.

• Уменьшение шагов расчетной сетки Δx+ и Δz+ c 60 и 20 в расчете № 2 до 40 и 15 в расчете № 3 привело к

уменьшению переходной зоны ΔRex с 200×103 110×103.

• В расчетах № 1 и № 2 с шагами сетки Δx+=60 и Δz+=20 величина cf после восстановления оказалась выше, чем в

расчете № 3 с Δx+=40 и Δz+=15 на (0.15-0.2)×10-3 (что составляет 3.5-4.5% от величины cf в контрольном сечении в

расчете № 3).

• Уменьшение Cm привело к росту числа мелких вихревых структур в ILES области.

• Влияние Cm на выбранном расчетном режиме на переходную зону минимально, что, во-видимому, может быть

связано с наличием около стенке RANS подобласти, в которой Cm =1. Во всех расчетах длина переходной зоны

составила составила ΔRex=200×103. При величине Cm =0.1 в расчете № 4 минимальное значение cf в переходной

зоне составило 81 % от значения cf в целевом сечении, а в расчете № 5 при Cm =1.0 – 77 %.
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Исследование RANS/ILES(i) методом влияния крупномасштабных 
вихрей в набегающем потоке на работу дозвукового 

воздухозаборника при различных углах атаки
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Целью настоящей работы являлся анализ с помощью RANS/ILES(i) метода [1], реализованного в

ПМ «Лазурит» [2], влияния КМВ на течение в модельном дозвуковом ВЗ, типичном для

пассажирских самолетов. Расчеты проводились при невозмущенном набегающем потоке и

набегающем потоке, в котором присутствуют КМВ, которые оказывают наибольшее влияние на

течение в ВЗ, сгенерированные с помощью синтетической турбулентности. Параметры

набегающего потока, соответствовали режиму взлета, рассмотрены углы атаки 5˚ и 12˚.

Проанализировано влияние КМВ в набегающем потоке и угла атаки на мгновенные и

осредненные поля течения внутри канала ВЗ, а также на величины интегральных параметров

течения и уровень турбулентных пульсаций в выходном сечении ВЗ.
1. А. С. Жигалкин, Д. А. Любимов. Улучшение разрешения RANS/ILES(i) методом турбулентных вихревых структур

при дозвуковых числах маха // ТВТ, 2025. Т. 63. №1, с. 57-67.
2. Свидетельство о государственной регистрации программы для ЭВМ № № 2023666963 Российская федерация.

«Программный модуль компьютерного моделирования физических процессов в авиационных силовых
установках» («Лазурит»): опубликовано 08.08.2023 / Любимов Д.А., Бендерский Л.А.; правообладатель ФАУ
«ЦИАМ им. П.И. Баранова».

Цель работы
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Геометрия ВЗ, режимные параметры, расчетная область

Общий вид геометрии ВЗ

Расчетная сетка в продольном сечении. Красной линией
обозначено сечение выхода, в котором рассчитывались
осредненные параметры.

• Объект исследования представляет собой модельный
осесимметричный дозвуковой ВЗ, типичный для
пассажирских самолетов. Его геометрия соответствует
численно исследованной в работе [1].

• Параметры набегающего потока соответствуют взлету
самолета: число Маха равно 0.3, углы атаки – 5˚ и 12˚,
температура – 288 К и статическое давление – 100.1 кПа.

• Расчеты были проведены в модельной постановке, без
вентилятора, втулка вентилятора оставалась неподвижной.

• Расчетная область имела форму цилиндра с диаметром 11D и
длиной 8D, где D – внешний диаметр цилиндрического участка
канала ВЗ.

• Уровень турбулентности определялся двумя параметрами:
уровнем пульсаций скорости U0 rms и линейным масштабом Lt,
для которых были выбраны следующие значения – U0 rms =
15 м/с и Lt/D = 2.

• Число ячеек по длине участка между входом и выходным
сечением ВЗ составило 170, по радиусу – 125, в азимутальном
направлении – 264, а размер пристенных ячеек лежал в
диапазоне (4.85…9.70)×10-5D

Размер ячеек в области
набегающего потока не
превышает Lt/4

1. Р. Ш. Аюпов, Л. А. Бендерский, Д. А. Любимов. Анализ RANS/ILES методом
влияния бокового ветра на характеристики турбулентного течения в
дозвуковом воздухозаборнике самолета // XII Всероссийский съезд по
фундаментальным проблемам теоретической и прикладной механики.
Сборник трудов в 4-х томах. Т. 2. Уфа: изд-во БашГУ, 2019, с. 282-284.
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Граничные условия

Поле числа Маха в набегающем потоке при
турбулентном набегающем потоке

• На входе в расчетную область задавались три
компоненты скорости и статическая температура
набегающего потока, а статическое давление
экстраполировалось изнутри расчетной области.

• На выходе из внешней части расчетной области
задавалось статическое давление набегающего потока,
а оставшиеся параметры экстраполировались.

• На выходе из канала ВЗ задавалось статическое
давление, величина которого соответствовала
значению газодинамической функции расхода q(λ) =
0.75.

• На стенках ВЗ использовано комбинированное
граничное условие «прилипание/функция стенки»,
которое выбиралось в зависимости от значения Y+ в
центре соседней со стенкой ячейки расчетной сетки.

• КМВ в набегающем потоке моделировались
добавлением к скорости потока на внешней границе
расчетной области искусственных пульсаций,
сгенерированных с помощью метода синтетических
вихрей (SEM) [1].

вход

№ Расчета
Уровень пульсаций, 

U0 rms, м/с
Угол атаки, ˚

1 0.0 5

2 15.0 5

3 0.0 12

4 15.0 12

Таблица расчетов

1. N. Jarrin. Synthetic Inflow Boundary Conditions for the Numerical Simulation of 
Turbulence. - Manchester: University of Manchester, 2008, thesis … Ph. D.
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Невозмущенный набегающий поток

Течение в канале ВЗ при невозмущенном набегающем
потоке практически стационарное, отрывные зоны
отсутствуют. Мгновенное поле скорости практические
симметрично относительно вертикальной оси.

Область отрыва может быть несимметрична
относительно вертикальной оси, а смещена вбок. Это
связано с тем, что пульсации скорости при выбранных
параметрах турбулентности (U0rms = 15м/с) могут
существенно превышать вертикальную компоненту
средней скорости набегающего потока (ок. 8 м/с при
угле атаки 5˚)

На нижней части обечайки поток
в отдельные моменты времени
разгоняется до сверхзвуковой
скорости и тормозится в системе
скачков уплотнения.

В некоторые моменты времени
интенсивность скачка
достаточно велика и его
взаимодействие с погранслоем
приводит к его отрыву.

Набегающий поток с КМВ

Влияние КМВ на мгновенное поле числа Маха
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Влияние КМВ и α на осредненный уровень потерь полного давления в 
выходном сечении ВЗ

Осредненный к-т сохранения полного 
давления в выходном сечении

№ 1, α=5˚

№ 4, α=12˚№ 2, α=5˚

• При невозмущенном набегающем потоке потери полного
давления при обоих углах атаки пренебрежимо малы – на большей
части площади выходного сечения значения σср составляют не
менее 0.999.

• При набегающем потоке с КМВ в поле σср в выходном сечении
области возникновения отрыва появляется участок, в котором σср

имеет пониженные значения по сравнению со случаем
невозмущенного набегающего потока.

• Максимальная толщина отрывной зоны в радиальном
направлении составляет 0.2D при α=12˚ против 0.1D при α=5˚.

• На стенке в нижней точке выходного сечения значения σср при
α=12˚ составляет 0.916 против 0.945 при α=5˚.

σср=0.9974

σср=0.9981 σср=0.9980

σср=0.9928

№ 3, α=12˚
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Влияние КМВ и α на интенсивность турбулентных пульсаций параметров 
течения в выходном сечении ВЗ 

№ расчета / 
параметр № 1, α=5˚ № 2, α=5˚ № 3, α=12˚ № 4, α=12˚

𝑈𝑟𝑚𝑠/𝑈н , % <0.1 6.8 0.16 9.8

𝑃𝑟𝑚𝑠/𝑃н , % <0.1 2.9 0.10 3.1

𝑃𝑟𝑚𝑠
∗ /𝑃н

∗, % <0.1 3.6 <0.1 3.86

𝜎 0.9981 0.9974 0.9980 0.9928

Влияние турбулентности на средние параметры в 
выходном сечении ВЗ

№ 4, α=12˚№ 2, α=5˚

Пульсации полного давления

Пульсации статического давления
• max(𝑃𝑟𝑚𝑠

∗ /𝑃н
∗) при α=12˚ составляет 6.9-7.0 %, при α=5˚ - 4.6-

4.7%, достигается в отрывной области.

• В остальной части выходного сечения величина 𝑃𝑟𝑚𝑠
∗ /𝑃н

∗ для

обоих углов атаки составляет 3.5-3.6 %.

• max(𝑃𝑟𝑚𝑠/𝑃н ) достигается в отрывной области и составляет при

α=12˚ - 4.3-4.4 %, а при α=5˚ - 3.0-3.1 %.

• В остальной части выходного сечения величина 𝑃𝑟𝑚𝑠/𝑃н для

обоих углов атаки составляет 2.8-2.9 %.
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• С помощью комбинированного RANS/ILES(i) метода высокого разрешения исследовано влияние КМВ в набегающем потоке при

разных углах атаки на работу модельного дозвукового ВЗ, типичного для пассажирских самолетов. Параметры набегающего

потока, соответствовали взлету самолета: число Маха 0.3, угол атаки 5˚ и 12˚. Расчеты проведены при двух состояниях

набегающего потока: невозмущенном и нестационарном с линейным масштабом вихрей Lt/D = 2 и U0 rms = 15 м/с.

• Установлено, что КМВ в набегающем потоке приводят к существенной нестационарности течения в канале ВЗ. Возникает

«блуждающая» в азимутальном направлении отрывная зона на нижней половине канала ВЗ.

• Установлено, что средняя по площади выходного сечения величина σср при добавлении КМВ изменяется незначительно.

• Получено, что при увеличении α с 5˚ до 12 ˚ при набегающем потоке с КМВ в выходном сечении увеличивается толщина

области возникновения отрывной зоны с 0.1D до 0.2D.

• Минимум значения σср в выходном сечении ВЗ достигается в области возникновения отрывной зоны у нижней стенки канала и

составляет 0.945 при α=5˚ и 0.916 при α=12˚.

• Максимум уровня пульсаций полного давления в выходном сечении ВЗ также достигается в указанной области и составляет

4.6-4.7 % при α=5˚ и 6.9-7.0 % при α=12˚. При этом в остальной части выходного сечения уровень пульсаций полного давления

почти не меняется с изменением угла атаки и составляет 3.5-3.6 %.

Выводы
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RANS/ILES(i) метод с SST моделью турбулентности.
Предварительные результаты
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RANS/ILES(i) метод с SST моделью турбулентности
За основу взят метод IDDES [M. S. Gritskevich, · A. V. Garbaruk, J. Schütze, · F. R. Menter Development of DDES and IDDES Formulations for the k-ω Shear 

Stress Transport Model. // Flow Turbulence Combust. DOI 10.1007/s10494-011-9378-4]

Однако, в него были внесены некоторые изменения в соответствии с идеологией RANS/ILES(i), первоначально
разработанного для модели SA [Любимов Д.А., Честных А.О. Исследование RANS/ILES-методом течения в высокоскоростном воздухозаборнике

смешанного сжатия на различных режимах работы // ТВТ. 2018. Т. 56. № 5. С. 729.]

Уравнения для SST модели турбулентности применительно к методу IDDES имеют вид:

Для RANS/ILES(i) метода масштаб длины lDDES заменен на dILES :
dILES= max(dΔ,df)

 Входящие в соотношение для dILES величины зависят от расстояния до стенки:
dΔ=d,при d≤CΔΔmax,       dΔ=10-6H, при d>CΔΔmax 

df= dfd, при fd≥fdmin,          df=10-6H, при fd<fdmin

Функция fd в имеет структуру аналогичную использованной в методе IDDES [Shur M.L., Spalart P.R., Strelets M.K., Travin A.K. A hybrid 

RANS-LES approach with delayed-DES and wall-modeled LES capabilities // Int. J. Heat Fluid Flow. 2008. V. 29. P. 1638–1649.]:
fd=max(fdt,fb)(1+fe) 

В выражении для fd функции fb, fe,и Ψ такие же, как и в методе IDDES. Функция fdt определена следующим образом:
fdt=th((Cdtrdt)

Cdt2)
Значения Cdt1 и Cdt2 выбирались на основе тестовых расчетов. Другие функции, входящие в выражения для fd и fdt,
совпадают с аналогичными в методе IDDES.



Central Institute of Aviation Motors named after P.I. BaranovЦентральный институт авиационного моторостроения имени П.И. Баранова 31

Особенности решения уравнений для модели турбулентности

• Уравнения для k и ω решались последовательно по неявной схеме.

• Обновление значений параметров производилось после решения обоих уравнений.

• Параметры на гранях ячеек в конвективных членах уравнений аппроксимировались с

помощью противопоточной схемы второго порядка (TVD2), либо пятого (WENO5).

• Диффузионные члены аппроксимировались также на гранях ячеек с помощью центрально

разностной схемы второго порядка.
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Обтекание обратного уступа, параметры задачи

Сетка: 25×40×40+280×80×40 ячеек

Параметры потока: P0=1000КПа, Pe=98КПа, T=300K, Re=2.8×104

Общий вид расчетной области

Граничные условия
• На верхней и нижней и прилипание/функция стенки.
• На боковых стенках условие периодичности.
• На входе полные параметры и угол наклона вектора

скорости.
• На выходе постоянное статическое давление.
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Обтекание обратного уступа. Влияние способа аппроксимации конвективных членов
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Асимметричный модельный диффузор, параметры задачи

Общий вид расчетной области
Сетка 225Х80Х100 ячеек

Параметры потока: P0=1000КПа, T=300K, Pe=93.7КПа, Re=5.2×105

Граничные условия
• На верхней, нижней и боковых стенках

комбинированное условие прилипание/функция
стенки.

• На входе полные параметры и угол наклона вектора
скорости.

• На выходе постоянное статическое давление.
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Асимметричный модельный диффузор. Влияние способа аппроксимации 
конвективных членов параметры задачи
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Асимметричный модельный диффузор. Влияние толщины ПС на входе

Распределение осредненного полного
давления по высоте канала в плоскости
симметрии при x/H=7.63
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Спасибо за внимание!

Тел.: +7 (499) 763-61-67
E-mail: info@ciam.ru

111116, Россия, Москва, 
ул. Авиамоторная, 2
www.ciam.ru

Центральный институт авиационного 
моторостроения имени П.И. Баранова
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