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Введение

Цель работы:

• Исследование возможностей метода LBM для описания распространения акустических возмущений на 
примере канонической задачи о распространении тонального сигнала в неограниченном пространстве.
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Достоинства LBM:

• Высокая скорость счета 

• Явная схема

• Строгое разделение нелокальных и 

нелинейных слагаемых

▪ Метод решёточных уравнений Больцмана (LBM) является развитием моделей решеточного газа 

(Lattice Gas Models, LGM). 

o LBM описывает поведение среды путем моделирования процессов переноса и столкновений

• Решаются модельные кинетические уравнения

• Высокая масштабируемость и параллелизуемость. 

• Расчеты на супер компьютерном кластере JUQUEEN 

демонстрируют линейное ускорение вплоть до 2 млн 

процессов на сетке в 886 млрд узлов, с скоростью близкой к 

1 трлн узлов в секунду [1]. 

[1] Schornbaum F., Rüde U. Massively Parallel Algorithms for the

Lattice Boltzmann Method on NonUniform Grids // SIAM Journal on

Scientific Computing. — 2016.

▪ В СПбПУ разрабатывается код, реализующий метод LBM



Разрабатываемый код

CPU-версия:

• Intel One API (icpx + MPI, неблокирующие обмены)

• Linux (WSL)
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GPU-версия:

• CUDA Toolkit (CUDA + cl.exe)

• Windows

▪ Язык C++;

▪ Структура данных: Struct of Arrays + структурированная сетка;

▪ Вывод данных с использованием библиотеки VTK;

▪ Средства разработки: VS2022 + Git + CMake

▪ Имеется две версии кода:

Сравнение скорости решения на CPU и GPU

Сетка CPU (i5-9300H, 4 проц.), с GPU (GeForce GTX 1650), с

1 млн узлов 220 30



Метод решёточных 
уравнений Больцмана
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Метод решёточных уравнений Больцмана
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Метод LBM осуществляет приближенное 

решение уравнения Больцмана:

𝜕𝑓

𝜕𝑡
+ Ԧ𝜉 ⋅ 𝛻𝑓 +

Ԧ𝐹

𝜌
⋅ 𝛻𝜉𝑓 = Ω

где 𝑓 Ԧ𝑟, Ԧ𝜉, 𝑡  - функция распределения частиц, 

которая в равновесии стремится к 

распределение Максвелла: lim
𝑡→∞

𝑓 → 𝑓𝑒𝑞

Ԧ𝑟, Ԧ𝜉, 𝑡 – переменные пространства координат, 

скорости и времени

Ԧ𝐹 – вектор внешних сил;

Ω = −
𝑓−𝑓𝑒𝑞

𝜏
 – интеграл столкновений в 

приближении Бхатнагара-Гросса-Крука

𝜏 – время релаксации (параметр);

• Макровеличины являются моментами 

𝑓 Ԧ𝑟, Ԧ𝜉, 𝑡 : 𝜌 Ԧ𝑟, 𝑡 = ׮ 𝑓𝑑3 Ԧ𝜉;

𝜌 Ԧ𝑣 Ԧ𝑟, 𝑡 = ׮ Ԧ𝜉𝑓𝑑3 Ԧ𝜉 и др;



Дискретизация уравнения Больцмана

В итоге получается решеточное уравнение Больцмана:

𝑓𝑖 Ԧ𝑟 + 𝑐𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖 Ԧ𝑟, 𝑡 −
𝑓𝑖 Ԧ𝑟, 𝑡 − 𝑓𝑖

𝑒𝑞
Ԧ𝑟, 𝑡

𝜏
Δ𝑡

На каждом шаге по времени в каждой точке 
выполняется 2 этапа
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Дискретизация проводится в семимерном пространстве Ԧ𝑟, Ԧ𝜉, 𝑡 :

• В пространстве скоростей используется разложение по дискретному набору, 

называемому решеткой 𝑓 Ԧ𝑟, Ԧ𝜉, 𝑡 → 𝑓𝑖 Ԧ𝑟, 𝑡 ; Ԧ𝑐𝑖 𝑖=1
𝑁 , N = 9

o Это разложение получается из разложения по полиномам Эрмита до 

второго порядка

• В физическом пространстве и по времени проводится дискретизация с 

постоянными шагами Δ𝑥 и Δ𝑡

Расчет влияния столкновений на 
функцию распределения в каждом узле

𝑓𝑖
∗ Ԧ𝑟, 𝑡 = 𝑓𝑖 Ԧ𝑟, 𝑡 −

𝑓𝑖 Ԧ𝑟, 𝑡 − 𝑓𝑖
𝑒𝑞

Ԧ𝑟, 𝑡

𝜏
Δ𝑡

Перенос функций распределения в 
соседние узлы

𝑓𝑖 Ԧ𝑟 + 𝑐𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖
∗ Ԧ𝑟, 𝑡

D2Q9

9



Алгоритм реализации LBM
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▪ Инициализация 𝜌, Ԧ𝑣 → 𝑓𝑖

▪ Итерационный цикл по времени

• Вычисление моментов (𝑓𝑖 → 𝜌, Ԧ𝑣)

o 𝜌 = σ𝑖 𝑓𝑖

o 𝜌 Ԧ𝑣 = σ𝑖 Ԧ𝑐𝑖𝑓𝑖

• Вычисление равновесной функции 𝜌, Ԧ𝑣 → 𝑓𝑖
𝑒𝑞

• Столкновение 𝑓𝑖 , 𝑓𝑖
𝑒𝑞

→ 𝑓𝑖
∗

o 𝑓𝑖
∗ Ԧ𝑟, 𝑡 = 𝑓𝑖 Ԧ𝑟, 𝑡 −

𝑓𝑖 Ԧ𝑟,𝑡 −𝑓𝑖
𝑒𝑞

Ԧ𝑟,𝑡

𝜏
Δ𝑡

• Перенос 𝑓𝑖
∗ → 𝑓𝑖

o 𝑓𝑖 Ԧ𝑟 + 𝑐𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖
∗ Ԧ𝑟, 𝑡

• Учет граничных условий 𝑓𝑖
∗ → 𝑓𝑖

▪ Вывод результатов (𝜌, Ԧ𝑣 → диск)



Связь решеточных уравнений Больцмана 
с уравнениями Навье-Стокса

Используя разложение Чепмена-Энскога по малому параметру 𝜀 = 𝑂 𝐾𝑛 :

𝑓𝑖 = 𝑓𝑖
𝑒𝑞

+ 𝜀𝑓𝑖
(1)

+ 𝜀2𝑓𝑖
(2)

+ ⋯

из решеточного уравнения Больцмана можно перейти к системе уравнений Навье-Стокса:
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌 Ԧ𝑣 = 𝑞 + 𝑂 Δ𝑥2 + 𝑂(Δ𝑡2);

𝜕𝜌 Ԧ𝑣

𝜕𝑡
+ 𝛻 ⋅ 𝜌 Ԧ𝑣 Ԧ𝑣 = −𝛻𝑝 + 𝛻 ⋅ (𝜇 𝛻 Ԧ𝑣 + 𝛻 Ԧ𝑣 𝑇 + 𝑂 Δ𝑥2 + 𝑂(Δ𝑡2) + 𝑂 Ԧ𝑣 3 ,

Изотермическое уравнение состояния:
𝑝 = 𝑐𝑠

2𝜌,

где 𝑐𝑠 =
1

3

Δ𝑥

Δ𝑡
 – скорость звука 

Коэффициент динамической вязкости:

𝜇 = 𝜌𝑐𝑠
2 𝜏 −

Δ𝑡

2

Вязкость и скорость звука зависят от шага по времени и пространству!
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Дискретизация в 

пространстве скоростей

Дискретизация по 

времени и пространству



Постановка задачи о 
монополе
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Задача о монополе
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▪ Точечный источник 𝑄 = 𝑄0 sin 𝜔𝑡

▪ Задача имеет три критерия подобия:

• 𝑄′0 =
𝑄0

𝜌0𝜔
= 0.01, 0.1, 1;

• 𝑅𝑒 =
𝑐𝑠

2

𝜔 𝜈+𝜈𝐵
= 𝑂(108);

• 𝑀 =
𝑈0

𝑐𝑠
= 0, 0.2

▪ Граничные условия – характеристические + 

демпфирующий слой (PML);

▪ Расчетная сетка – однородная декартова с шагом Δ𝑥.

▪ В рамках ур. Навье-Стокса задача описывается системой:
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌 Ԧ𝑣 = Q𝛿 Ԧ𝑟 ;

𝜕𝜌𝑣

𝜕𝑡
+ 𝛻 ⋅ 𝜌 Ԧ𝑣 Ԧ𝑣 = −𝛻𝑝 + 𝛻 ⋅ (𝜇 𝛻 Ԧ𝑣 + 𝛻 Ԧ𝑣 𝑇 + Q Ԧ𝑣𝛿 Ԧ𝑟 ;

𝑝 = 𝜌𝑐𝑠
2

Условие линейности:
𝜔𝑄0

𝜌0𝑐𝑠
2 ≪ 1

и имеет аналитическое решение: 𝑝′𝑎 = 𝑅𝑒
1

𝛽
Θ0

2 𝑘

𝛽
𝑟𝛽 + 𝑖

𝑀𝑥

𝑟𝛽
Θ1

2 𝑘

𝛽
𝑟𝛽

𝜔𝑄0

4𝑖𝛽2 𝑒𝑖 𝜔𝑡+𝑀𝑘𝑥/𝛽2
;



Особенности моделирования источника в 
рамках LBM

▪ Вид решаемых решеточных уравнений:

𝑓𝑖 Ԧ𝑟 + 𝑐𝑖Δ𝑡, 𝑡 + Δ𝑡 − 𝑓𝑖 Ԧ𝑟, 𝑡 = −
𝑓𝑖 Ԧ𝑟, 𝑡 − 𝑓𝑖

𝑒𝑞
Ԧ𝑟, 𝑡

𝜏
Δ𝑡 + 1 −

Δ𝑡

2𝜏
𝑆𝑖Δ𝑡

▪ Источник – схема Gou:

𝑆𝑖 = 𝑤𝑖 1 +
Ԧ𝑐𝑖 ⋅ Ԧ𝑣 − Ԧ𝑣2

𝑐𝑠
2 +

Ԧ𝑐𝑖 Ԧ𝑐𝑖: Ԧ𝑣 Ԧ𝑣

𝑐𝑠
4 𝑄𝛿 Ԧ𝑥

▪ Данная система восстанавливает систему ур. Навье-Стокса:
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[2] Malaspinas O. Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization

Граница устойчивости:

𝜇 = 𝜌𝑐𝑠
2 𝜏 −

Δ𝑡

2

Источник

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌 Ԧ𝑣 = Q𝛿 Ԧ𝑟 ;

𝐷(𝜌 Ԧ𝑣)

𝐷𝑡
= 𝛻 ⋅ 𝑃 + Q Ԧ𝑣𝛿 Ԧ𝑟 − 𝜏 −

Δ𝑡

2
𝛻 ⋅ Q𝛿 Ԧ𝑟 Ԧ𝑣 Ԧ𝑣 ;

Повышение устойчивости за счет рекурсивной регуляризации [2]

→ 0 при 𝝉 → 𝚫𝒕/𝟐



Результаты расчетов
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Сравнение численного решения с 
аналитическим
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𝑴 = 𝟎 𝑴 = 𝟎. 𝟐

▪ Волновая картина представлена 

расходящимися окружностями

▪ Смещение окружностей в 

направлении внешнего потока

▪ Хорошее совпадает с 

аналитическим решением:

𝐸𝑟𝑟𝑜𝑟 =
1

2𝜆
෍

𝑥=𝜆

3𝜆 𝑝 − 𝑝𝑎

|𝑝𝑎|

M Error, %

0 0.47

0.2 0.53



Влияние параметров PML-слоя
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▪ При 𝜎𝑚𝑎𝑥 ≥ 0.02, 𝐿𝑃𝑀𝐿 ≥ 2𝜆 

решение можно считать 

независимым от данных 

параметров

▪ Слабое влияние числа Маха

▪ 𝐿𝑃𝑀𝐿 – толщина 

демпфирующего слоя

▪ 𝜎𝑚𝑎𝑥 – максимальный 

коэффициента 

демпфирования



Влияние амплитуды источника
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Условие 

линейности:
𝜔𝑄0

𝜌0𝑐𝑠
2 ≪ 1

Q0
′

1
4𝜋2 ⋅

𝜆
Δ𝑥

2 = 𝐴 ≪ 1

𝑐𝑠 =
1

3

Δ𝑥

Δ𝑡

▪ Резкий рост ошибки при 𝑄0
′ = 1 связан с 

нелинейными эффектами:

𝜆/Δ𝑥 Q0
′ 𝐴, %

29 1 5

29 0.1 0.5

29 0.01 0.05



Влияние шага сетки
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Результаты:

• Второй порядок точности;

• Погрешность менее 1% при 
𝜆

Δ𝑥
= 20.

Параметры моделирования:

• 𝑄0
′ = 0.1;

• 𝜎𝑚𝑎𝑥 = 0.05, 𝐿𝑃𝑀𝐿 = 4𝜆.



Заключение
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В результате выполнения работы были получены следующие результаты:

• Проведено систематическое исследование возможностей метода решеточных уравнений Больцмана для 

описания распространения акустических волн на примере решения задачи о распространении волны от 

точечного гармонического источника акустических возмущений в неограниченном пространстве.

• Установлено, что параметры PML-слоя оказывают существенное влияние на уровень отраженных волн и 

определены минимальные допустимые значения коэффициента демпфирования (𝜎𝑚𝑎𝑥 ≥ 0.02) и толщины 

слоя (𝐿𝑃𝑀𝐿  ≥  2𝜆).

• Исследование зависимости ошибки от амплитуды источника показало, что при 𝑄0
′  >  0.1 нелинейные 

эффекты становятся заметными, что согласуется с аналитической оценкой.

• Показано, что используемый метод имеет второй порядком точности, и при описании волны для 

обеспечения относительной погрешности менее 1% необходимо использовать не менее 20 точек на 

длину волны.



Спасибо за внимание!
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