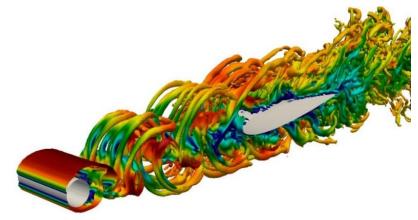


Программный комплекс DigiTEF Новые возможности

Онас

- Название: Лаборатория СПО цифрового моделирования технических систем ИСП РАН.
- Запуск лаборатории: 15 марта 2011г
- Цель: Развитие российских средств моделирования сложных физических процессов и индустриальных задач механики сплошной среды с использованием СПО
- Специализация: Применение Свободного Программного Обеспечения (СПО) для создания средств цифрового моделирования и их внедрение в жизненный цикл предприятий
- Основной стек СПО: Salome (препроцессор), OpenFOAM+ (солвер), Paraview (постпроцессор)
- Другие используемые пакеты: Dakota, AMReX, Code_Aster, Calculix, Nek5000, Nektar, Bem++
- Website: https://unicfd.ru/
- GitHub: https://github.com/unicfdlab/



Обзор ПО ИСП РАН. DigiTEF

- 1. **DigiTEF** программный комплекс для проведения компьютерного моделирования и инженерного анализа междисциплинарных задач. Комплекс разрабатывается на базе свободно распространяемых программ с открытым исходным кодом, а также уникальных модулей и библиотек ИСП РАН. Включен в Реестр Российского ПО от 24.04.2019 №168, лицензия № 5377.
- 2. Модуль, включающий графический пользовательский интерфейс, библиотеки по управлению и настройке расчетного случая.

Основной стек используемых технологий:

C++, MPI/OpenMP, Git, QT, FFTW, Jenkins, Doxygen, Docker и др.

Обзор ПО ИСП РАН. Открытые модули

1. Собственные, открытые (https://github.com/unicfdlab/) исследовательские программные модули для расчета:

- ➤ Несжимаемых\сжимаемых течений на основе гибридного алгоритма PIMPLE и Курганова-Тадмора.
- Несжимаемых\сжимаемых течений на основе регуляризованных уравнений.
- > Турбулентных течений с использованием гибридного URANS/LES подхода и улучшенных численных схем дискретизации.
- > Акустического шума с применением интегрального метода.
- Обледенения
- Винтов с применением упрощенных моделей
- > Размыва донной поверхности

Открытые версии модулей DigiTEF успешно применяются в академических, образовательных и промышленных учреждениях мира: Institut Pprime (Франция), Korea Atomic Energy Research Institute (Корея), Universitat der Bundeswehr Munchen (Германия), Northwestern Polytechnical University (КНР), Ocean University of China (КНР), Embry-Riddle University (США), California Institute of Technology (США) и пр.

Основные особенности DigiTEF

- открытый исходный код (позволяет повысить сохранность данных, контролировать и адаптировать реализованные алгоритмы под конкретные задачи);
- отсутствие ограничений на количество пользователей, ячеек расчетной сетки (позволяет используемых ядер снизить экономические затраты на вычисления дальнейшее использование)
- понятный графический интерфейс, который при необходимости может быть адаптирован под конкретное предприятие и решаемые задачи;

	DigiTEF	OpenFOAM
Открытый исходный код	✓	✓
Неограниченное количество пользователей и заданий	⊘	✓
Неограниченное количество ячеек расчетной сетки и используемых ядер	⊘	⊘
Устойчивые численные алгоритмы	✓	-
Специальные граничные условия	✓	-
Примеры на основе реальных задач	✓	-
Графический интерфейс	✓	-
Неограниченное количество ячеек расчетной сетки и используемых ядер Устойчивые численные алгоритмы Специальные граничные условия Примеры на основе реальных задач	✓✓✓	✓––––

- использование современных моделей и алгоритмов за счет синхронизации технологического уровня с международным сообществом;
- наличие средств автоматизации вычислений и интеграции моделей для комплексного исследования технических объектов;
- возможность разработки дополнительных компонентов в соответствии с конкретными требованиями;
- возможность использования высокопроизводительных систем вычислений (суперкомпьютеров и кластеров) для ускорения вычислений.

Что нового?

- Обновилась архитектура программного комплекса.
- Реализован графический пользовательский интерфейс.
- Разработаны новые программные модули.

Как готовое средство численного моделирования, что дает возможность инженерам быстро решать задачи с приемлемой точностью

Как платформа для интеграции

различных открытых программных продуктов в виде компонентов комплекса для решения уникальных задач

Как средство численного моделирования

RAS

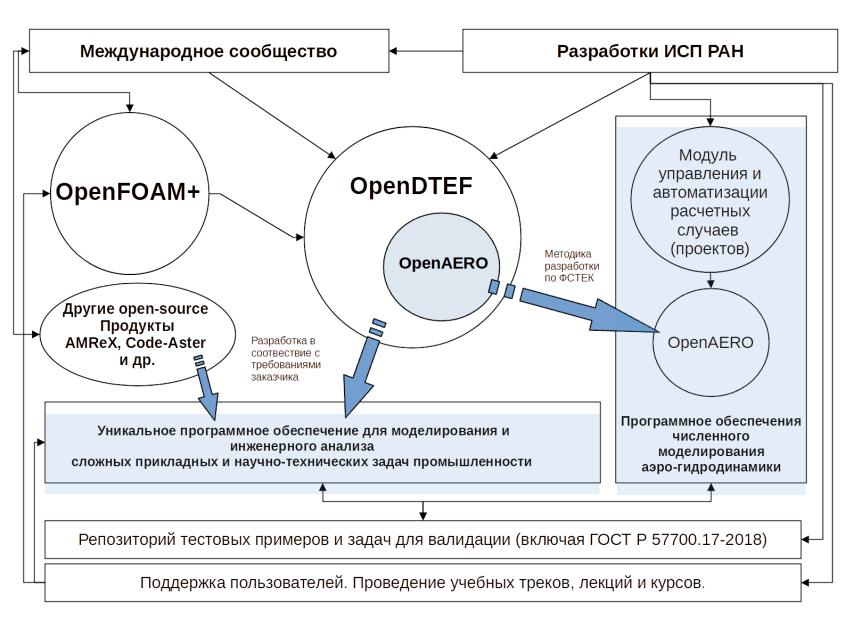
Пре процессинг

- Импорт геометрических моделей из сторонних CAD пакетов.
- Импорт расчетных сеток из различных сторонних пакетов, например ICEM, ANSYS, Gmsh
- Построение автоматической неструктурированной сетки, в том числе в параллельном режиме
- Анализ качества, диагностика расчетных сеток
- Динамические/подвижные и деформируемые сетки, сетки с перекрытием.
- Пользовательские граничные и начальные условия.

Пост-процессинг

- Возможность экспорта полей физических переменных из объема или с поверхностей в различных форматах
- Интеграция с открытым пакетом Paraview

Расчетные возможности


- Стационарные и нестационарные процессы
- Ламинарные и турбулентные течения, включая RANS, LES, DES и гибридные модели турбулентности
- Многокомпонентные и многофазные течения
- Вязкие и невязкие течения
- Течение сжимаемых и несжимаемых жидкостей
- Сверхзвуковые течения
- Течения со свободной поверхностью (VOF)
- Учет пористости
- Тепломассоперенос и сопряженный теплообмен
- Расчет динамики тела в потоке (6DOF)
- Химические реакции и модели горения
- Акустика дальнего поля
- Кавитация (гомогенное приближение)
- Обледенение

Основные преимущества

- Импорт геометрических моделей и расчетных сеток в общепризнанных форматах (.stl;.obj;.msh;.unv и др.)
- Автоматическое построение неструктурированной расчетной сетки
- Возможность разработки и интеграции сложных междисциплинарных моделей
- Открытый исходный код
- Отсутствие ограничений (лицензий) на вычислительные ресурсы и размер расчетных сеток
- Большое международное сообщество. Сотни защищенных диссертаций и множество научных публикаций, выполненных на базе вычислительного ядра OpenFOAM+, позволяют использовать все современные, актуальные подходы и методы для решения выбранных задач. Обновления раз в полгода.
- Открытое вычислительное ядро OpenFOAM+ применяется в научной и учебной работе в ведущих технических ВУЗах РФ, таких как МГТУ им. Баумана, МФТИ, МАИ, ННГУ и др.

Как платформа для интеграции

Разработка на основе СПО позволяет:

- Ускорить цикл разработки за счет синхронизации технологического уровня с международным сообществом
- Повысить сохранность данных, открытый исходный код позволяет убедится в отсутствие скрытых угроз
- Снизить экономические затраты на вычисления (отсутствие ограничений на количество ядер и расчетных ячеек)
- **Накопить компетенции** внутри команды (страны)
- Тестируется сообществом

Недостатки использования СПО:

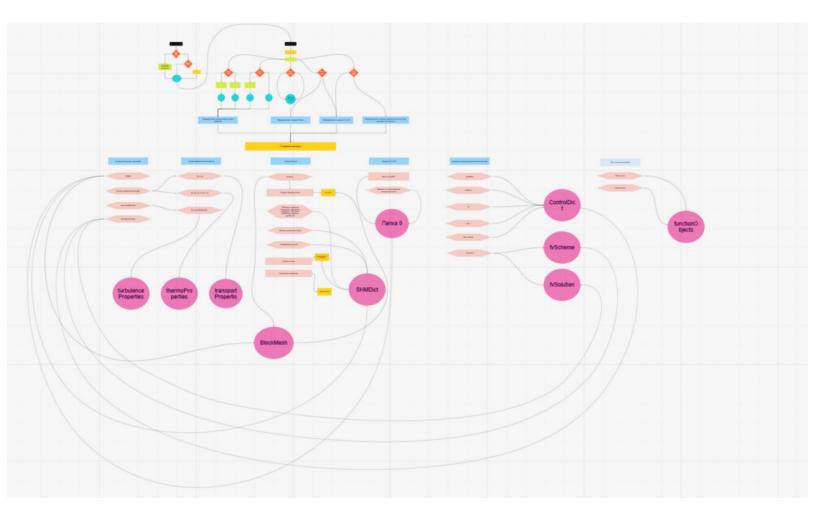
- Стоимость* разработки новых цифровых моделей
- Потребуется повышения квалификации сотрудников-пользователей

^{*}стоимость как правило окупается за счет снижения вычислительных затрат при дальнейшем использовании; вопрос повышения квалификации может быть решен за счет проведения обучения

Используемые СПО

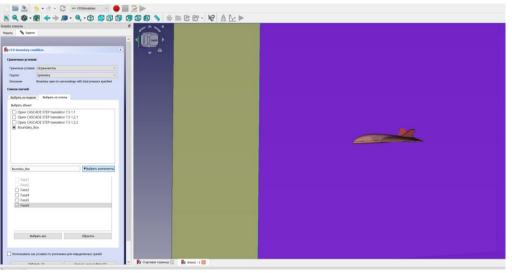
Пре-процессор	Критерии выбора:				
Salome	Открытая интегрируемая платформа для численного моделирования. Представляет собой набор LGPL пре- и постпроцессинга.	Активная разработка Поддержка			
FreeCAD	Программа параметрического трёхмерного моделирования, предназначенная прежде всего для LGPL проектирования объектов реального мира любого размера.	Наличие комьюнити			
GMSH	Генератор трехмерной расчетной сетки GNU GPL	Чистота кода			
Гидро и аэродинамика					
OpenFOAM+	Свободно распространяемый инструментарий вычислительной гидродинамики	GNU GPL			
AMReX	Открытая программа для разработки массивно-параллельных блочно-структурированных приложений на адаптивных сетках.	University of California, Lawrence Berkeley National Laboratory			
Nektar++	Платформа на базе спектральных элементов, разработанная для создания высокопроизводительных масштабируемых решателей для широкого задач	MIT License			
Прочностные расчеты					
Code_Aster	Решение широкого класса задач механики деформируемого твёрдого тела, теплообмена, акустики, сейсмики методом конечных элементов	GNU GPL			
Calculix	Открытый, свободный программный пакет, предназначенный для решения линейных и нелинейных трёхмерных задач механики твёрдого деформируемого тела с помощью МКЭ	GNU GPL			
deal.ii	Библиотека с открытым исходным кодом для решения уравнений в частных производных с использованием конечных элементов	LGPL			
Пост-процессор					
Paraview	Открытый графический кросс-платформенный пакет для интерактивной визуализации в исследовательских целях	BSD license			
Visit	Интерактивный инструмент параллельной визуализации и графического анализа с открытым исходным кодом	BSD license			

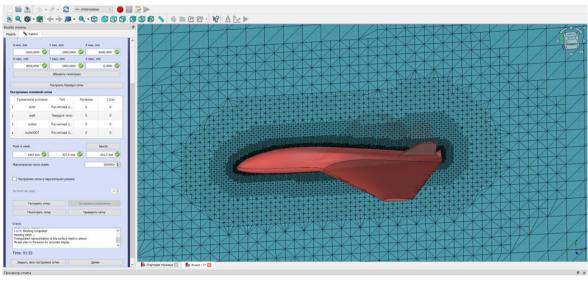
Разработка графического интерфейса



Основные этапы:

- 1. Анализ аналогичных решений
- 2. Выбор программного ядра
- 3. Определение сценариев работы
- 4. Программная реализация
- 5. Тестирование
- 6. Доработка



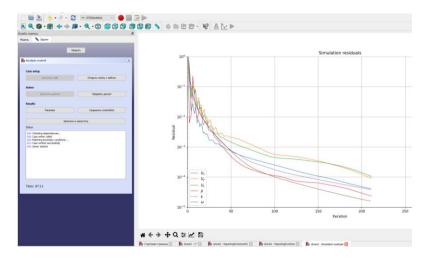


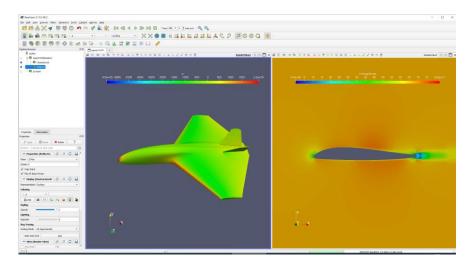
Проработка общей концепции графического интерфейса

Основные этапы работы пользователя

1. Выбор основных допущений

2. Настройка граничных и начальных условий

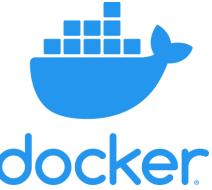

3. Построение расчетной сетки


4. Выбор свойств жидкости

5. Настройка солвера

6. Контроль процесса решения

7. Визуализация и анализ результатов


Кроссплатформенность

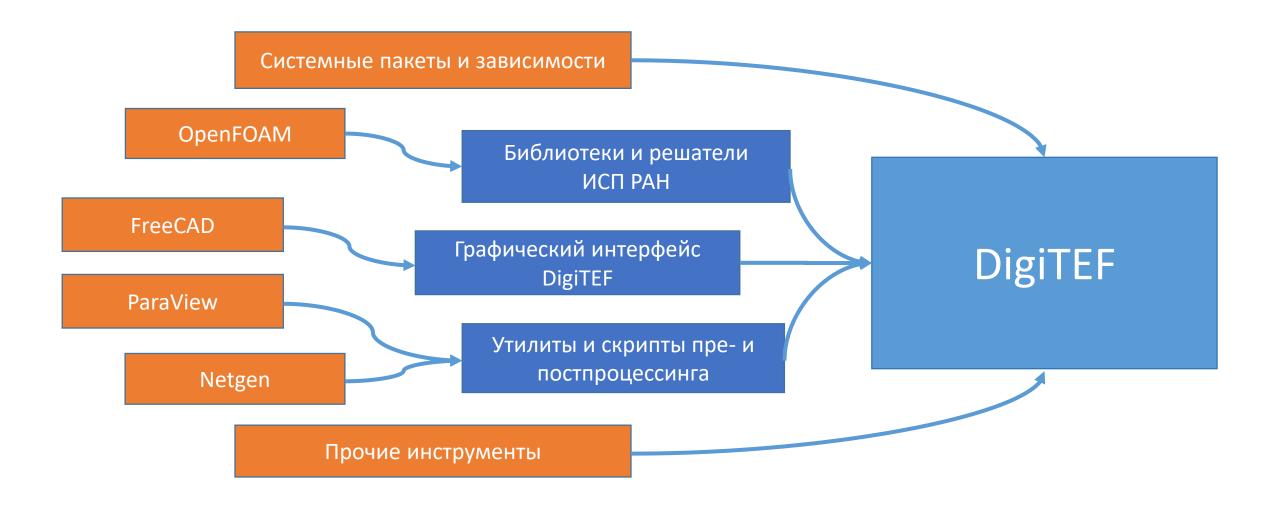
Проблемы:

- некоторые инструменты не являются кроссплатформенными
- окружения разных пакетов могут конфликтовать с окружениями ПО, уже имеющимся у пользователя, и друг с другом
- может возникнуть конфликт версий библиотек
- машина пользователя «засоряется»

Работа с контейнером в двух словах

На стороне разработчиков:

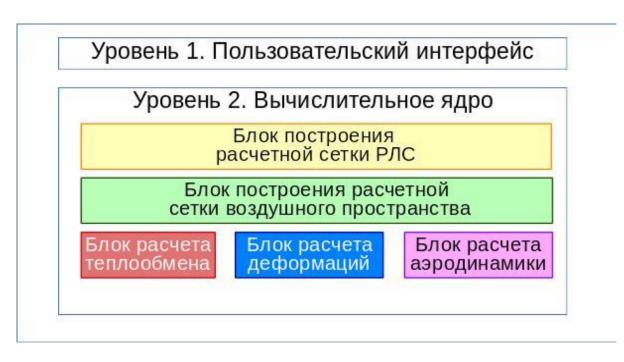
- подготовка образа контейнера со всеми необходимыми зависимостями внутри
- подготовка файла запуска со всеми настройками, требуемыми для запуска графики и взаимодействия файловых систем вне и внутри контейнера

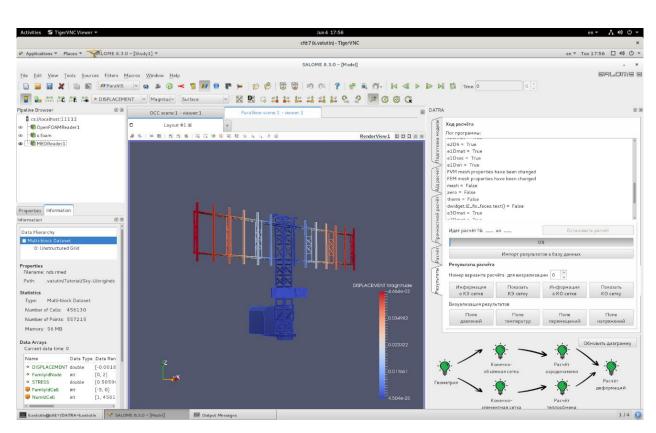

Что нужно сделать пользователю:

- скачать упакованный образ контейнера и файл запуска
- развернуть образ у себя на машине
- запустить контейнер

Для работы пользователю нужно иметь на машине только установленный клиент Docker

Этапы сборки образа контейнера



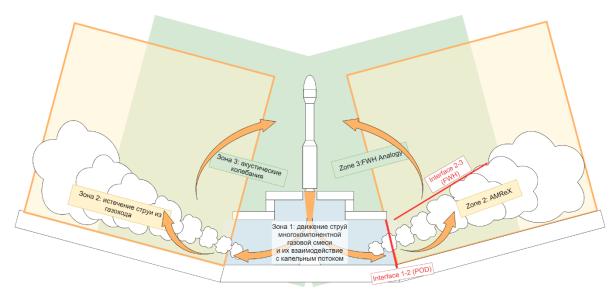


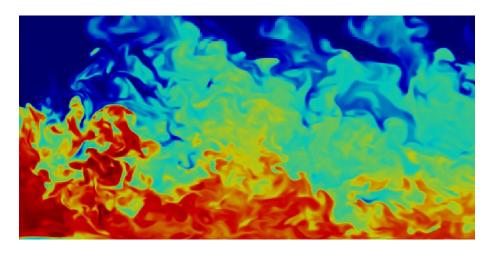
Среда автоматизированного проектирования

Разработана среда автоматизированного моделирования аэродинамики, устойчивости и деформации конструкции

Были объединены различные технологии программирования и библиотеки с открытым исходным кодом: Salome, OpenFOAM,Code_Aster, C++, python, bash

Моделирование газодинамики и акустики при старте РКН




Ракета VEGA Цель моделирования провести исследования влияние подачи воды на акустику старта

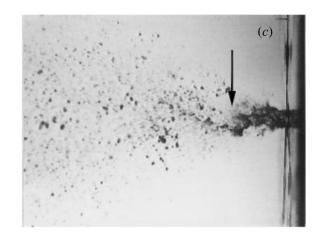
В ходе работы разработана трех зональная модель: Зона 1 — Газодинамика смеси и капель. Пакет OpenFOAM

Зона 2 — Распространение струи газа. Пакет AMReX Зона 3 — Акустика дальнего поля. Библиотека LibAcoustics (ИСП РАН) Отличие OASPL от экспериментальных данных ~ 1 дБ

Применением зональной модели

Мгновенное поле температуры в зоне 2

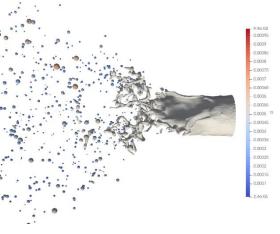
Моделирование распыла струи жидкости потоком газа



В рамках проекта по разработке цифровой модели процесса распыления металла

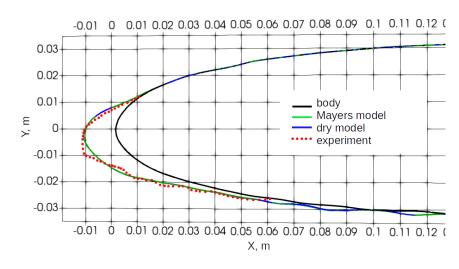
Цель: создание средства моделирования распыла струи жидкости под действием потоков газа и оценка размеров образовавшихся капель жидкости.

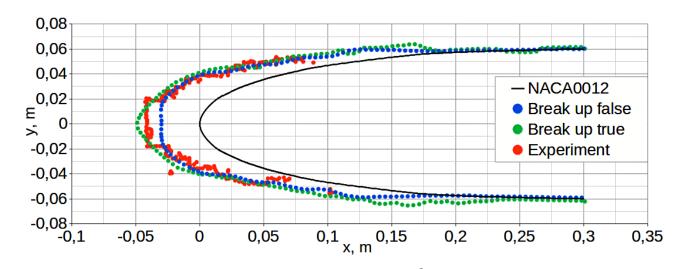
Особенности: сочетание в рамках одного расчета эйлерова и лагранжева представлен жидкости.


- 1.3e-04 - 0.00012 - 0.00011 - 0.0001 - 9e-5 - 8e-5 - 7e-5 - 6e-5 - 5e-5 - 4e-5 - 3e-5 - 2e-5 - 5.7e-06

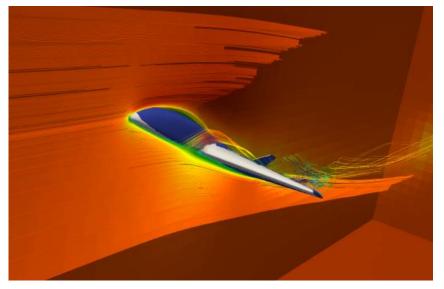
Примеры задач:

- •задача о распыле струйки топлива потоком воздуха;
- •задача атомизации водяной струи под действием струи газа из кольцевого сопла.


Разработка трехмерных средств моделирования обледенения


RAS

В ходе работ выполнена разработка и интеграция нескольких модулей:

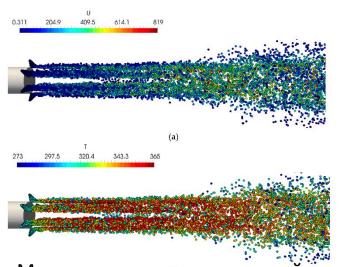

- Модуль расчета аэродинамики
- Модуль расчета капельного потока
- Модуль расчета движения межфазной поверхности
- 4. Модуль переноса объемной доли
- Метод погруженных границ для определения геометрии тела

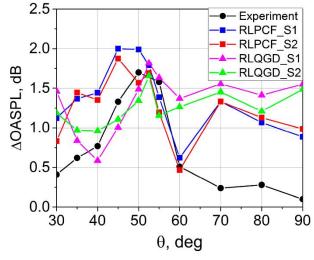
Расчет обледенения крыла NACA0012

Исследование влияния дробления капель

Расчет обледенения модели БПЛА

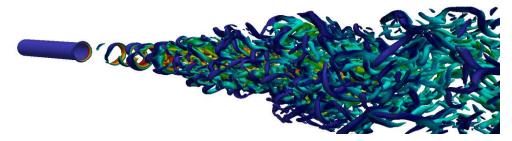
Свободные струи и акустика



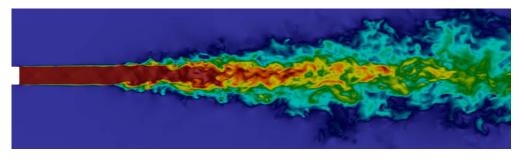

Экспериментальная установка

140
136
132
128
124
RLPCF_S1
124
RLQGD_S1
120
30
40
50
60
70
80
90
θ, deg

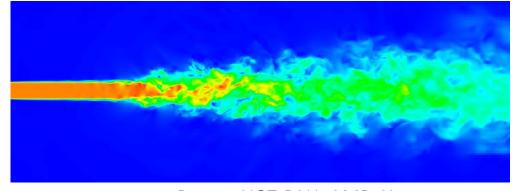
Распределение уровня шума



Моделирование водяных струй с помощью частиц

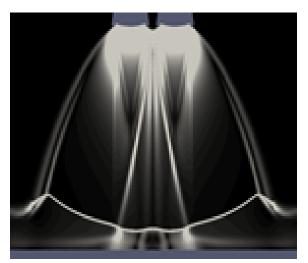


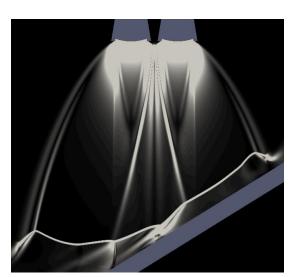
Влияние подвода воды в струю


Истечение свободных струй

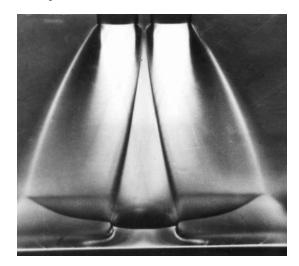
Расчет ИСП РАН, OpenFOAM, гибридный солвер

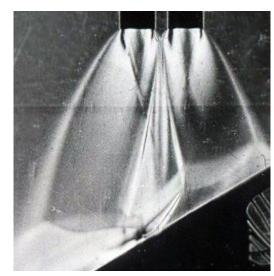
Расчет ИСП РАН, OpenFOAM, КГД уравнения

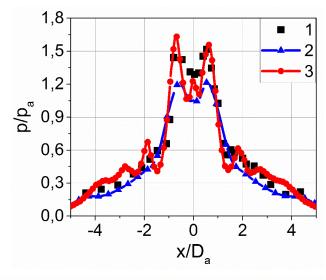

Расчет ИСП РАН, AMReX

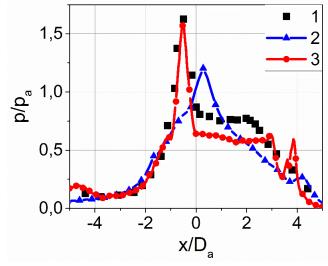

^{*}Более подробно https://doi.org/10.3390/fluids6080274

Взаимодействие недорасширенных струй с тѕр


преградой

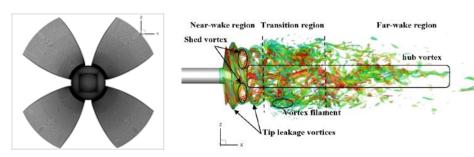

Расчет ИСП РАН


Экспериментальные данные



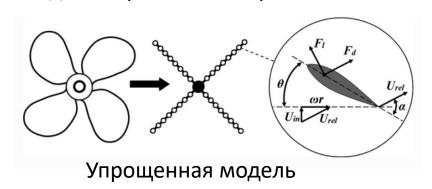
Распределение давления на преграде

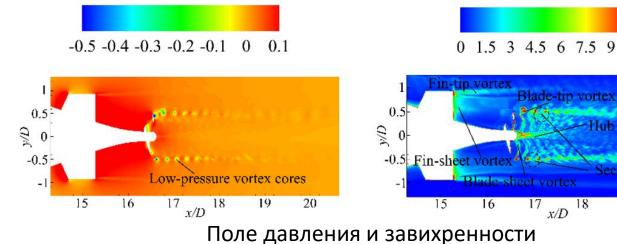
RAS


1 – Эксперимент; 2 – rhoCentralFoam; 3 – QGDFoam

Задачи гидродинамики

19


20



Fin-1
Propeller
Fin-2

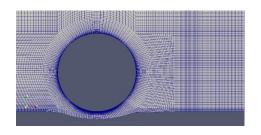
Модель подводной лодки

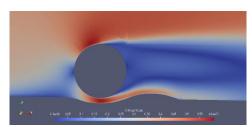
Модель корабельного гребного винта

-5.0e-02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0e+00

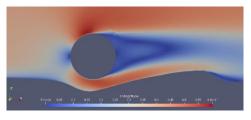
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

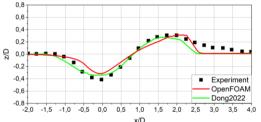
fin-tip vortex

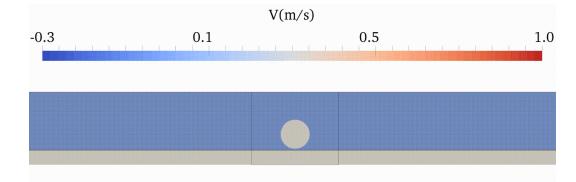

Сравнение осреднённого поля скорости

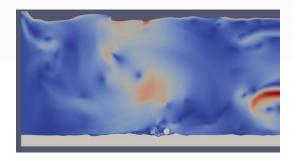

Обтекание модели подводной лодки с вращающимся винтом

Задачи о размыве донной поверхности




Численное моделирование размыва донной поверхности под трубопроводом


Расчетная сетка


Эволюция донной поверхности под трубопроводом

Обтекание цилиндра набегающей волной с размытием

Исследование влияния начальных данных

Размытие берега набегающей волной

$$t = 0.1$$

$$t = 1.2$$

Заключение

Направления дальнейшей работы:

- Исследование возможностей для ускорения расчетов
- Разработка и интеграция новых упрощенных моделей расчета
- Дальнейшее развитие графического пользовательского интерфейса
- Проработка интерфейсов взаимодействия с другим СПО
- Разработка документации и подготовка руководства пользователя

Контакты

- Website: https://unicfd.ru/
- GitHub: https://github.com/unicfdlab/