

FlowVision версия «Пи» (3.14.01)

Сорокин К.Э., к.ф.-м.н. Ведущий программист ООО «ТЕСИС»

> 20 лет на рынке

- Первые пользователи РКК Энергия. Первые задачи горение метана, чистые комнаты, стартовый стол РН, обтекание ракеты на старте
- С 2007 года полностью обновлен с использованием современных технологий разработки и не зависит от устаревшего кода

• Развитие по рыночным законам

- FlowVision не создавался методом копирования решений известных зарубежных аналогов
- Во FlowVision впервые реализован ряд передовых решений в области построения сетки, параллельных вычислений и численных методов

• Тесное взаимодействие с заказчиком

 Инвестиции различных отраслей промышленности в развитие FlowVision определяло и определяет облик программы. Пользователи создают FlowVision таким, каким он им нужен

Немного истории

Версия 1 (разработка начата в 1991 г. в ИАП РАН)

- параллельность (транспьютеры) до 128 процессоров
- ступенчатая сетка на границе
- k-E модель турбулентности, горение, несжимаемая жидкость
- оконный интерфейс, управление «мышью»

Версия 2 (разработка начата в 1995 г. в ИАП РАН)

- последовательный код для IBM PC совместимых систем
- прямоугольная сетка с криволинейными границами
- 5 моделей турбулентности, многофазность, горение, подвижные тела
- Microsoft Windows 95 и выше

Версия 3 (разработка начата в 2004 г. на базе компании ТЕСИС)

- параллельность MPI+OpenMP
- модульная, адаптивная к изменению и расширению, структура
- Windows, Linux
- 2016 г. Создание версии под платформу Эльбрус/Ангара
 - Включение в Единый реестр российских программ для электронных вычислительных машин и баз данных. Рег.№ 2504 на основании Приказа Минкомсвязи России от 23.12.2016 №682
- 2019 г. Получение Аттестационного паспорта программы для ЭВМ НТЦ ЯРБ

Промышленные партнеры

РКК «Энергия им. С.П. Королева», ГРЦ Макеева, НИКИЭТ, ОКБМ, АК им. С.В. Ильюшина, ТАНТК им. Г.М. Бериева, ЦАГИ, BTU, GoodYear, Atlas Copco, Турбокомпрессор, Салют и прочие

then.	Федеральная служба			
по эколог	ическому, технологическому и атомному вадзору			
0/	(Ростехнадзор)			
M.	Федеральное бюджетное учреждение			
оНаучно-технич	есный центр по ядерной и разнационной безопасностно (ФБУ «НТЦ ЯРБ»)			
Экспертный сове	т по аттестации програмы для ЭВМ при Ростех надзоре			
	10,00			
	HIPPOP			
ATTECT	анионный паспорт			
TROFPAM	MU TIG STERTPOHHNX			
HFUIFAM	MBI DIN SIEKITOHIDIX			
вычис	ЛИТЕЛЬНЫХ МАШИН			
	«FlowVision»			
регистрационный Ме	492 or 19.12.2019			
выдан	Акционерному Обществу «Опытное Конструкторское			
	Бюро Машиностроения имени И.И. Африкантова» (АО «ОКБМ Африкантов»).			
	Юридический адрес: Россия, 603074, г. Нижний Новгород, пр. Бурнаковский, д.15.			
срок действия	до 19.12.2029			
-	AFY JUTH ODE			
заместитель директор	тного совета			
по аттестации програ	мы дая ЭВМ			
при Ростехнадзоре, ка	нд техн. наук			
	-			
	I REWORK CONTRACTOR STORES			
	and the second			

Междисциплинарное моделирование

- CFD расчет уравнений движений жидкости и газа с учетом
 - Химических реакций/Горения
 - Турбулентности
 - Переноса дисперсных частиц и течения тонких пленок
 - Пористой среды
 - Свободной поверхности
- Лучистый теплообмен (P1, DOM)
- Электрические и магнитные поля
- Акустическая модель
- Динамика твердых и деформируемых тел
 - FSI: Взаимодействие течения и конструкции в связке с FEA-кодами Abaqus, Nastran, WinMachine, Fidesys
 - Собственный прочностной решатель (1Д, 2Д, 3Д) в планах

- Метод конечного объема
- Динамическая локально-адаптивная расчетная сетка
- Разрешение пограничных слоев криволинейная призматическая сетка, согласованная с основной
- Распределенная и общая память одновременно
- 2-ой порядок пространственной аппроксимации уравнений
- Явные и неявные методы расчета
- Решатели СЛАУ мультигрид и GMRES
- Скользящие сетки
- Подвижные тела
- Интерфейс к КЭ программам (Abaqus, Fidesys и др.)

Что нового в FlowVision «Пи» 3.14.01

- Модуль «Акустика»
- Модификация и унификация методики настройки граничных условий для решения сопряженных задач
- Новые «пользовательские» модели для мультидисциплинарного моделирования (фазовые переходы в твердых телах)
- Модели разбрызгивания капель при взаимодействии с пленкой
- Существенно поменялся интерфейс программы делаем настройку расчета более последовательной и user-friendly!
- Превращение из CFD в Междисциплинарную CAE-систему

Модуль «Акустика»

9

Макро:

Основными источниками внешнего шума являются потоки всех видов городского транспорта, проходящего по автомобильным и железнодорожным магистралям, суда при их движении в акваториях, самолеты в зонах воздушного подхода к аэропортам, производственные, коммунальные и энергетические объекты и их отдельные установки, открытые стадионы.

На более низком уровне:

Причины возникновения шума на примере пропеллера

Основные источники шума:

- Колебание лопастей
- Шум от стационарных нагрузок
- Шум от нестационарного нагружения (неравномерное распределение нагрузок по окружности)
- Квадруполи (турбулентность, сжимаемость)

Если основным источником шума являются стационарные нагрузки, то для расчета акустического поля может использоваться RANS-подход.

В остальных случаях - URANS и вихреразрешающие подходы.

Если причиной шума является деформация конструкции (например, колебания лопастей), то необходимо решать связанную задачу с использованием FSI подхода, или программу, разработанную FlowVision – Moving-Body Connector

11

На основе нестационарного моделирования сжимаемого течения

- Все интересующие волны на пути от источника к приемнику должны быть достоверно разрешены во времени и в пространстве.
 - 15-20 ячеек на длину волны с использованием схемы второго порядка
 - Необходимо чтобы CFL=1
- Граничные условия не должны влиять на результаты моделирования.
 Некорректный выбор расположения границ или граничных условий может привести к ложным отражениям.
- Выбор размера сетки, размеров расчетной области и шага по времени должен опираться на те значения частоты, которые представляют наибольший интерес.
- Для корректного определения тонов (пиковых частот) требуется большой набор данных – накопления «статистики».

FlowVision предлагает три оригинальных подхода к моделированию акустики:

- Моделирование источников и распространения звука на основе совместного решения уравнений Навье-Стокса и акустики по методу акустико-вихревой декомпозиции
- Накопление информации об источниках в ходе решения уравнений Навье-Стокса и последующее решение уравнения акустики независимо от постановки исходной задачи и без включения уравнений Навье-Стокса
- Моделирование акустики с учетом моделирования деформации обтекаемой поверхности, используя Moving-Body Connector

Прогнозирование характеристик при изменении параметров систем:

- Автомобильная промышленность
- Авиационная промышленность
- Судостроение

Архитектурная акустика:

• Планировка помещений с учётом звуковых характеристик

Задачи оптимизации(примеры):

- Шум подкапотного пространства автомобиля
- Шум в салоне самолета с учетом работы системы жизнеобеспечения
- Шум в салоне вертолета

13

Основные допущения

- поток дозвуковой (M<<1);
- течение изоэнтропийное;
- внутренняя энергия не изменяется;
- вязкая диффузия не учитывается для распространения акустических колебаний;
- акустические колебания (вследствие сжимаемости среды) существенно меньше по сравнению с вихревыми колебаниями (вихревого и поступательного движения жидкости);
- влияние акустических колебаний на вихревое течение жидкости не учитывается

Литература

- Ландау Л.Д., Лифшиц Е.М. Теоретическя Физика. Гидродинамика // М.:Физматлит. 1988.
- Артамонов К.И. Термогидро-акустическая устойчивость // М.: Машиностроение. 1982.

$$\frac{\partial V}{\partial t} + \nabla \frac{V^2}{2} - V \times (\nabla \times V) = \frac{\nabla P}{\rho} + \nu \Delta V$$

$$\frac{\partial \rho}{\partial t} + \nabla (\rho V) = 0$$

$$s = const \qquad \Rightarrow dh = \frac{dp}{\rho}; \ dP = a^2 d\rho$$

$$arphi$$
 - акустический потенциал $|\nabla \varphi| \ll |U|$
 $V = U + V' = U + \nabla \varphi$ - мгновенная скорость среды ===>
 U - скорость основного стационарного течения
 $V' = \nabla \varphi$ - скорость акустического течения
 $\nabla U = 0; \nabla V' = \nabla \times \nabla \varphi = 0 \Rightarrow \nabla \times V = \nabla \times U;$

$$\frac{\partial \mathbf{V}}{\partial t} + \nabla \frac{V^2}{2} - \mathbf{V} \times (\nabla \times \mathbf{V}) = -\nabla h + \nu \Delta \mathbf{V}$$
$$\frac{1}{a^2} \left(\frac{\partial h}{\partial t} + V \cdot \nabla h \right) + \nabla V = 0$$

$$\begin{cases} \frac{dU}{dt} = -\nabla H + \nu \Delta U + \nabla \varphi \cdot \nabla \times U \\ \frac{1}{a^2} \frac{d^2 \varphi}{dt^2} - \Delta \varphi = \frac{1}{a} \frac{dH}{dt} \end{cases}$$

где
$$H = h + \frac{d\varphi}{dt} + \frac{1}{2} (\nabla \varphi)^2$$

Функция источника

$$-\Delta H = S = \nabla (\mathbf{U}\nabla \mathbf{U}) = \nabla (\frac{1}{2}\nabla U^2 - \mathbf{U} \times \nabla \mathbf{U}) = \nabla (\frac{\nabla U^2}{2} - \mathbf{U} \times \boldsymbol{\omega}) \quad =========> \quad S = \nabla (\mathbf{V}\nabla \mathbf{V})$$

- $h = \langle h \rangle + h'$ $S = \langle S \rangle + s'$
- $\langle h
 angle$ осредненная энтальпия
- h' акустические пульсации энтальпии =====> $\frac{1}{a^2} \frac{\partial^2 h'}{\partial t^2} \Delta h' = s'$
- s' нестационарная часть функции источника

16

1. Акустически твердая граница
$$\frac{\partial h'}{\partial n}$$

- 2. Акустически мягкая граница h' = const
- 3. Акустический импеданс $h' = \rho_w V'_{wn} Z_w$,

 $Z_w = \rho_w a_w$ - удельное акустическое сопротивление

= 0

- 4. Сопряженная граница $Z_1 = Z_2$
- 5. Неотражающая граница

<u>Постановка задачи</u>: Длина трубы: L=2 [м] Скорость звука: a=280.25

<u>Граничные условия</u>: Вход: h'_{inlet} = 100cos(2π⋅500*t*) Выход: неотражающее

Длина волн: λ = a/500 = 0.5605 [м]

Примеры расчётов. Распространение и дифракция звука от точечного акустического источника

Постановка задачи:

Звуковая волна от точечного источника входит в узкий проем и распространяется в полупространстве за проемом

Граничные условия:

Выход неотражающее Стенка нулевой градиент

Источник: $S = Acos(\omega t)$

Совместный расчет гидродинамики и акустики

І этап Гидродинамический расчет без акустики

До квазистационарного режима

Оценка результатов

$$\frac{1}{a^2}\frac{\partial^2 h'}{\partial t^2} - \Delta h' = S - \langle S \rangle$$

- **II этап** Накопление осредненного значения источника $\langle S \rangle$
- **Шэтап** Продолжение гидродинамического расчета совместно с решением уравнения акустики

Акустический источник рассчитывается на каждом временном шаге и передается в уравнение

акустики как разность между мгновенным значением S источника и осредненным значением $\langle S \rangle$

IV этап Обработка полученных результатов с помощью анализа Фурье

<u>Плюсы</u>

- одновременный гидродинамический и акустический расчет
- Значение источника получается из гидродинамики на каждом шаге по времени
- обрабатываем только полученное решение
- можно накапливать гидродинамический источник для последующих акустических расчетов <u>Минусы</u>
- невозможно получить решение для выделенных частот

Акустический расчёт винта

APC Slow Flyer 10x4.7 small-scale rotor D = 254 [мм]

Геометрия винта

Постановка во FlowVision

Винт в режиме висения

Скорость вращения винта n=81.3(3) [об/с]

Модель турб. SST

- 1. J. B. Brandt. Small-scale propeller performance at low speed. Master thesis, University of Illinois at Urbana-Champaign, 2005
- 2. Brandt, J. B., Selig, M. S. Small-Scale Propeller Performance at Low Speeds Online Database. https://m-selig.ae.illinois.edu/props/volume-1/propDB-volume-1.html, 2010.
- 3. J. B. Brandt, M. S. Selig. Propeller performance data at low Reynolds numbers. AIAA Paper 2011-1255, 2011.

Гидродинамика винта

С поступью, $J = \frac{V_{\infty}^n}{nD}$

Акустический расчёт винта. Источник

- Гидродинамический расчет продолжается
- Модель турбулентности отключается
- Включается расчет волнового уравнения с акустическим источником, который рассчитывается на каждом шаге интегрирования

Граничные условия для волнового уравнения:

Стенка(винт) – бесконечный импеданс,

Выход – неотражающая граница

FlowVision

Акустический расчёт винта. Совместный расчет

Контрольные датчики на окружности $r \approx 0.3 \, [{\rm M}]$

Спектральная плотность мощности

І этап Гидродинамический расчет
 До квазистационарного режима
 Оценка результатов

$$\frac{1}{a^2}\frac{\partial^2 h'}{\partial t^2} - \Delta h' = s'$$

ІІ этап Накопление источника *s*′ (без осреднения),

Обработка накопленных результатов с помощью быстрого преобразования Фурье и запись коэффициентов ряда Фурье для каждой ячейки вспомогательной сетки в файл

- **Ш этап** Расчет акустики **в произвольной расчетной области и на произвольной сетке** с накопленным источником, значение рассчитывается **обратным преобразованием Фурье** на каждом шаге
- **ІV этап** Обработка полученных результатов с помощью анализа Фурье

<u>Плюсы</u>

- Источник можно помещать в произвольных точках пространства (4 колеса или винта)
- Можно разложить источник в ряд Фурье и рассчитать акустику для отдельного спектра частот <u>Минусы</u>
- Потеря точности
- Дополнительная обработка данных

Гидродинамический источник шума шины,

временная зависимость в датчиках

Мгновенное распределение источника

А.А. Аксенов, В.С. Каширин, С.Ф. Тимушев, Е.В. Шапоренко Развитие метода акустико-вихревой декомпозиции для моделирования шума автомодильных шин // КиМ, 2023, Т. 15, № 4, с. 979-993

Акустика автомобильной шины. Сравнение двух подходов

Акустика автомобильной шины. Валидация

• Сравнение результатов моделирования акустики разными методами

Унификация процесса настройки сопряженных граничных условий

Настройка сопряженных ГУ (слайдинг, периодика)

Настройка сопряженных ГУ (тепловое сопряжение)

сопряженная поверхность

Было

Стало

Собственные модели для мультидисциплинарного

моделирования во FlowVision

Создание собственных моделей во FlowVision

Хотя FV3.14.01 еще не 4-е поколение, но оно уже 3+

Используя калькулятор FlowVision, можно создать собственные сложные модели

Новые решенные задачи

• Моделирование процесса закалки стали

1 a=cos(3*Time)							Accept							
						Cancel								
													Undo	Re
						Compile								
														mplie
							Keyboard							
1	2	3	+	-	*	1	sin	COS	tg	ctg	min	max	sum	prod
4	5	6	#	%	^	sqrt	arcsin	arccos	arctg	arcctg	AND	OR	XOR	NOT
7	8	9	abs	sign	linear	root	sh	ch	th	cth	if	in	==	!=
0	•	Е	vec	.x	.y	.z	arsh	arch	arth	arcth	<	<=	>=	>
()	=	len	norm	refl	clamp	exp	In	lg	log	{	}	:	;
						Variat	oles & con	stants						
All F	Physical	Integra	al Us	er Re	ferences	Variab Cons	oles & con stants	stants						
All F	Physical Commor	Integra	al Us	er Re	ferences	Variat	oles & con stants	stants						
	Physical Commor Ø Area M Cons	Integra n ervative	al Usi velocity	er Re	ferences	Variab Con:	oles & con stants	stants						
	Physical Commor Area Cons	Integra n ervative dinates	al Use velocity	er Re	ferences	Variab Cons	oles & con stants	stants						
	Physical Commor Area Cons Coor Coor	Integra n ervative dinates ity	al Use	er Re	ferences	Variat Con:	oles & con stants	stants						
	Physical Commor Cons Cons Coor Coor Dens Coor Dista Coor Coor Coor Coor Coor Coor Coor Coo	Integra n dinates ity nce to wa citTimeSt	al Use velocity all tep	er Re	ferences	Variat	oles & con stants	stants						
	Physical Commor Cons Cons Coor Coor Dens Coor Dista Co Explic	Integra n ervative o dinates ity nce to w citTimeSt	al Usi velocity all tep	er Re	ferences	Variab Cons	oles & con	stants						
	Physical Commor Area Cons Coor Coor Dens Dens Coor Explic Explic	Integra n ervative n dinates ity nce to wa citTimeSt	al Usi velocity all tep	er Re	ferences	Variab	oles & con stants	stants s						
	Physical Commor Area Cons Coor Dons Dons Dista Explice Arithmetic	Integra n dinates ity nce to w citTimeSt	al Use velocity all tep	er Re	ferences	Variat Cons Hyper	Operation	s s .ogic	Statistic	Exter	nal S	pecial		
All F 	Physical Commor Area Cons Coor Coor Coor Coor Coor Coor Coor Coo	Integra n dinates ity nce to w. citTimeSt	al Use velocity all tep	er Re	ferences ometric Ident.	Variat Cons Hyperl	Operation bolic L sage syn	s s .ogic tax	Statistic	Exter	nal S	pecial		
All F	Physical Commor Cons Cons Coor Coor Coor Coor Coor Coor Coor Coo	Integra n dinates ity nce to w citTimeSt	al Use velocity all tep	er Re	ferences ometric Ident.	Variat Cons Hypert U	Operation bolic L sage syn s"; "-v"	stants s .ogic tax	Statistic	Exter	nal S	pecial		
All F	Physical Commor Cons Cons Con Dens Dens Dens Con Arithmetic Dn n	Integra n dinates ity nce to w citTimeSt	al Use velocity all tep	er Re	ometric Ident. -	Variat Cons Hyper U "- "s	Operation bolic L sage syn" :1+s2"; "v: 1-s2"; "v:	s ogic tax '1+v2"	Statistic	Exter	nal S	pecial		

Постановка задачи

Шар из стали 652СХ диаметром 120 [мм] нагревают до температуры полной аустенизации (выше температуры Ae3 ≈ 760 °C). Далее шар помещается в закалочную камеру, где остужается с помощью проточной воды до температуры ≈ 50 °C.

<u>Цель работы</u>

Определить:

• глубину закаленного слоя мелющего шара, т.е. глубину слоя мартенсита на поверхности;

Шведов К. Н., Галимьянов И. К., Казаковцев М. А. Получение мелющих шаров с высокой поверхностной и нормированной объемной твердостью //Металлург. – 2020. – №. 6. – С. 16-22.

Без учета напряжений и деформаций

Есть эксперимент => «подбор» коэффициента теплоотдачи для ГУ

Время, с	Температура поверхности, ⁰С	Скорость охлаждения поверхности, ^о С/с	Агрегатное состояние жидкости	Коэффициент теплоотдачи, Вт/м²К
0 - 3.5	≈ 800 - 400	≈100	Пленочное кипение	5000-6000
3.5 - 4.8	≈ 400 - 80	≈250	Пузырьковое кипение	10000-12000
4.8 - 240	≈ 80-52	≈0.1	Конвективная теплоотдача	1

Компьютерное моделирование процесса термической обработки мелющих шаров. Мет аллург 7 (2021): 35-43.

Расчетный фазовый состав стали 3140 при охлаждении ≈ 1.25 [°С/сек]:

Ferrite	0.006159
Pearlite	0.038398
Bainite	0.367369
Martensite	0.580598
Austenite	0.007476

//***Chemical composition*** // {'GrainSize': 7.0, 'C': 0.41, 'Mn': 0.86, 'Si': 0.26, 'Ni': 1.28, 'Cr': 0.71, 'Mo': 0.0, 'W': 0.0, 'As': 0.0, 'V': 0, 'Cu': 0.0}

Austenisation Temperature = 800.00; Cooling time = 600.00;

Cooling rate = 1.23;

<u>При наличии</u> у пользователя экспериментальной TTT (Time Temperature Transformarion) диаграммы:

При изотермической выдержке при T = 650 [°C]: Точка 1 - начало образование перлита Точка 2 - окончание образования перлита С шагом 1 °С или больше ТТТ диаграмма может быть представлена в виде системы уравнений Аврами-Колмогорова:

X - объемная доля дочерней фазы, X_{eq} - объемная доля дочерней фазы в равновесном состоянии, K и n - коэффициенты, которые находят для каждой температуры отдельно, зная X в точках 1 и 2.

ПРАВАЯ ЧАСТЬ для уравнения массопереноса во FlowVision:

$$\frac{dX}{dt} = \frac{X_{eq} - X}{K} \mathbf{n} \left(-ln(1 - \frac{X}{X_{eq}})\right)^{1 - \frac{1}{n}}$$

Постановка задачи во FlowVision

Моделирование с расчетной для стали 652СХ ТТТ диаграммой и вышеописанными граничными условиями показывает глубину прокаливания не менее 15 мм:

Экспериментально глубина закаленного слоя определяется из условия, что объемная доля мартенсита > 90% и составляет 14-18 мм.

Шведов К. Н., Галимьянов И. К., Казаковцев М. А. Получение мелющих шаров с высокой поверхностной и нормированной объемной твердостью //Металлург. – 2020. – №. 6. – С. 16-22.

Твердость в каждой точке шара рассчитывается по правилу смеси, т.е.:

FlowVision

Experiment

50

FV

50.86

60

Объемная

твердость, HRC

Эксп.

43-47

40

Шведов К. Н., Галимьянов И. К., Казаковцев М. А. Получение мелющих шаров с высокой поверхностной и нормированной объемной твердостью //Металлург. – 2020. – №. 6. – С. 16-22.

Некоторые последние валидационные тесты FlowVision

Испарение керосина

Испарение керосина. Испытательный стенд

M. BRANDT , M. RACHNER & G. SCHMITZ (1998): An Experimental and Numerical Study of Kerosine Spray Evaporation in a Premix Duct for Gas Turbine Combustors at High Pressure, Combustion Science and Technology, 138:1-6, 313-348

Испарение керосина. Постановка задачи во FlowVision

Контрольные сечения: x_к = 30 [мм], 60 [мм], 100 [мм], 150 [мм]

Испарение керосина. Спектр размерных семейств

Спектр размеров капель на входе расчётной модели

φ

7.50.112.50.317.50.322.50.1527.50.0732.50.0537.50.03

[*] – функция распределения диаметров капель **с холодного эксперимента** по материалам M. BRANDT , M. RACHNER & G. SCHMITZ (1998): An Experimental and Numerical Study of Kerosine Spray Evaporation in a Premix Duct for Gas Turbine Combustors at High Pressure, Combustion Science and Technology, 138:1-6, 313-348 [**] – выбор значений для расчета FlowVision

Распределение среднего Сотеровского диаметра / скорости испарения капель

Скорость испарения - отношение разности объёмных потоков капель в сечениях х_о и х_к к потоку в х_о:

$$\frac{V_{evap}}{V_0} = \frac{q_{V,k}^d - q_{V,0}^d}{q_{V,k}^d}$$

Тесис

Течение из

сверхзвукового сопла

Течение из сопла. Испытательный стенд

Carson, Lee, Experimental and analytical investigation of Axisymmetric supersonic cruise nozzle geometry at Mach numbers from 0.60 to 1.30 // 1981

Течение из сопла. Расчетная сетка

Течение из сопла. Результаты

Распределение локального коэффициента давления по внешней поверхности аппарата при $M_{\infty} = 1.2, NPR = 10.08$

Распределение отношения локального статического давления к полному давлению на входе по внутренней поверхности сопла

 $NPR = p_{t,j}/p_{\infty}$ -Nozzle pressure ratio. Значения NPR, M_{∞} , p_{∞} , T_{∞} задаются согласно расчетным случаям

Разрушение струи в

поперечном потоке

Разрушение струи. Испытательный стенд

R.K. Madabhushi, M.Y.Leong, D.J.Hautman (2004): Simulation of the break-up of a liquid jet in crossflow at atmospheric conditions, ASME Turbo Expo 2004, GT2004-54093

Разрушение струи. Постановка задачи во FlowVision

Разрушение струи. Расчетная сетка

Разрушение струи. Результаты

Разрушение струи. Результаты

Диаметр частиц в контрольном сечении

Диаметр частиц

Скорость частиц в контрольном сечении

Скорость воздуха

Объём Фазы Жидкости 1 0.31623 0.1 0.031623 0.01 0.0031623 0.001 0.00031623 0.0001 3.1623e=05 1e=05

Ищем разработчиков для развития ПК FlowVision

Сорокин Константин Эдуардович к.ф.-м.н., ведущий программист ООО ТЕСИС

info@flowvision.ru