ПМ Лазурит в 2023 году.

Жигалкин А. С., Кукшинова И.В., Любимов Д.А.

Х профессиональный слет разработчиков отечественных CFD кодов «Отечественные CFD коды - 2023» (CFD Weekend - 2023), г. Москва, 9-10 декабря 2023г.

Введение

• Свидетельство о государственной регистрации программы для ЭВМ № 2019661604 Российская Федерация. Программный модуль компьютерного моделирования на основе уравнений RANS/URANS (Лазурит-RANS): опубликовано 04.09.2019 / Любимов Д.А., Бендерский Л.А.; правообладатель ФАУ «ЦИАМ им. П.И. Баранова».

Для замыкания используются модели турбулентности SA, SA-BC, k-ε (Лондера –Шармы), k-ε с поправкой на реализуемость (поправка Дурбина).

Для аппроксимации конвективных членов в уравнениях H-C (сжимаемые течения) и в скалярных уравнениях доступны противопоточные схемы 1го порядка, TVD2, TVD3, WENO5.

Расчет низкоскоростных течений может быть произведен с использованием прекондиции Weiss-Smith.

- Свидетельство о государственной регистрации программы для ЭВМ №2020615925 Российская федерация. «Программный модуль компьютерного моделирования на основе уравнений RANS/ILES» («Лазурит RANS-ILES»): опубликовано 04.07.2020 / Д.А. Любимов, Л.А. Бендерский; правообладатель ФАУ «ЦИАМ им. П.И. Баранова».
- Свидетельство о государственной регистрации программы для ЭВМ № № 2023666963 Российская федерация. «Программный модуль компьютерного моделирования физических процессов в авиационных силовых установках» («Лазурит»): опубликовано 08.08.2023 / Любимов Д.А., Бендерский Л.А.; правообладатель ФАУ «ЦИАМ им. П.И. Баранова».

Комбинированные вихреразрешающие подходы, описанные в статьях ТВТ2012 и ТВТ2018 соответственно. Различаются способом переключения RANS/ILES. В ПМ Lazurit RANS/ILES переключение, аналогично DES: по размеру текущей ячейки и ее расстоянию до стенки. В ПМ Lazurit RANS/ILES(i) не только по размеру ячейки, но и по параметрам течения в ней, подобно тому, как это сделано в IDDES.

В области RANS у стенок для замыкания используется модель SA. Для апроксимации конвективных членов в уравнениях H-C доступны сохраняющие монотонность схемы MP5 и MP9, в скалярных уравнениях используется WENO5.

- 1. Любимов, Д. А. Разработка и применение метода высокого разрешения для расчета струйных течений методом крупных вихрей / Д. А. Любимов // ТВТ. 2012. Т. 50, вып. 3. С. 450–466.
- 2. Любимов, Д. А. Исследование RANS/ILES-методом течения в высокоскоростном воздухозаборнике смешанного сжатия на различных режимах работы / Д. А. Любимов, А. О. Честных // ТВТ. 2018. Т. 56, вып. 5. С. 729–737.

Характеристики кода

Название кода:

ПМ Лазурит

Что моделируется (классы течений):

сжимаемые течения: дозвук – сверхзвук, аэроакустика

Моделирование турбулентных течений: *RANS, URANS, RANS/ILES*

Сетки и сеточные технологии: структурированные многоблочные криволинейные сетки, импорт сеток и граничных условий из CFD-GEOM, ручное построение сеток и задание граничных условий Численные методы: Конечно-объемные Переменные: физические Порядок аппроксимации по пространству 1-9 для предраспадных параметров в схеме Роу неявная схема (dual time stepping) Интегрирование по времени: Ускорение вычислений: **OpenMP-MPI**

FORTRAN

Язык программирования:

Центральный институт авиационного моторостроения имени П.И. Баранова

Реализация RANS/URANS метода в ПМ Лазурит

Метод Роу для расчета параметров на гранях ячеек:

 $\mathbf{f}_{i+1/2} = \frac{1}{2} [\mathbf{f}(\mathbf{q}_{L}) + \mathbf{f}(\mathbf{q}_{R})] - \frac{1}{2} |\mathbf{A}| (\mathbf{q}_{R} - \mathbf{q}_{L}) \quad (1)$

Для предраспадных параметров q_L и q_R на гранях ячеек могут быть использованы монотонные схемы 1го порядка, TVD2, TVD3, WENO5.

Для уравнений переноса используется скалярный аналог метода Роу (1). При использовании для замыкания модели SA для аппроксимации членов в конвективных потоках использована схема WENO5. Для k-є модели - TVD2, TVD3.

Уравнения для модели турбулентности решаются отдельно от системы уравнений Н-С. Уравнения для k и є решаются последовательно. Обновление значений производится после решения обоих уравнений. Поправка на реализуемость для k-є модели:

$v_t = \min(v_t, 0.3k/(G_1^2)^{0.5})$

G₁ – свертка тензора скоростей деформации.

Граничные условия: на входных сверхзвуковых границах фиксируются все параметры течения, на стенке – функция стенки / прилипание, на выходных – статическое давление (дозвук) или снос параметров изнутри расчетной области (сверхзвук).

Неявная схема интегрирования по времени (dual time stepping) для расчета нестационарных течений, метод установления для стационарных.

Ламинарно-турбулентный переход для внешних течений. ПМ Лазурит RANS/URANS. Алгебраическая модель для описания ЛТП. (Продолжение после долгого перерыва работы 2020г)

Мотивация выбора модели турбулентности для расчета ламинарно-турбулентного перехода

Задачи о моделировании ЛТП при использовании RANS с моделями турбулентности активно решаются. Обычно для этого к стандартным моделям турбулентности добавляется одно или несколько уравнений в частных производных, из которых вычисляется коэффициент перемежаемости ү, который уже используется в уравнениях исходной модели турбулентности для модификации источниковых членов.

Недостатки: увеличиваются вычислительные затраты, поскольку надо решать дополнительные уравнения. Способ решения этой системы уравнений? – Устойчивость, сходимость, граничные условия.

Все они неуниверсальны, точность и настройки зависят от конкретной задачи.

Заманчивым представляется использование алгебраической модели ЛТП, которая разработана недавно.

Член с порождением в модели SA умножается на коэффициент перемежаемости ү, который вычисляется с помощью алгебраических соотношений.

S. C. Cakmakcioglu, O. Bas, U. Kaynak, A correlation-based algebraic transition model, J. Mech. Eng. science, 2017

S. C, Cakmakcioglu, O. Bas, A zero-equation transition model depending on local flow variables, Ankara Intern. aerospace conf., 2017

Имеются противоречивые отзывы об этой модели. Она также неуниверсальна. Однако, требует минимальных изменений в модели SA и незначительно увеличивает время счета. Это послужило мотивацией ее включения в ПМ Lazurit RANS/URANS.

Модификация SA модели турбулентности для расчета ламинарно-турбулентного перехода

Стабников, Гарбарук [3]

$$\frac{\partial \tilde{v}}{\partial t} + u_j \frac{\partial \tilde{v}}{\partial x_j} = \gamma_{BC} c_{b1} \tilde{S} \tilde{v} - c_{w1} f_w \left(\frac{\tilde{v}}{d}\right)^2 + \frac{1}{\sigma} \left[\frac{\partial}{\partial x_j} \left((v + \tilde{v}) \frac{\partial \tilde{v}}{\partial x_j}\right) + c_{b2} \frac{\partial \tilde{v}}{\partial x_j} \frac{\partial \tilde{v}}{\partial x_j}\right]$$

Вводится перемежаемость $\gamma_{BC} = 1 - \exp\left(-\sqrt{Term_1} - \sqrt{Term_2}\right)$
SA-BC
 $Term_1 = \frac{\max\left(Re_{\theta} - Re_{\theta_C}, 0.0\right)}{\chi_1 Re_{\theta_C}}$
 $Term_2 = \frac{\max\left(v_{BC} - \chi_2, 0.0\right)}{\chi_2}$
 $Term_2 = \max\left(\frac{1}{\chi_2}\frac{\mu_t}{\mu}, 0.0\right)$
 $Re_{\theta} = \frac{Re_v}{2.193}, \quad Re_v = \frac{\rho d_w^2}{\mu}$ S, $Re_{\theta_C} = 803.73(Tu_{\infty} + 0.6067)^{-1.027}, \quad v_{BC} = \frac{v_t}{Ud_w}$
Значения калибровочных констант:
SA-BC
 $\chi_1 = 0.002$ и $\chi_2 = 5$
 $\chi_1 = 0.002$ и $\chi_2 = 5/Re$ предложили позже Бас, Чакмакчиоглу, Мура [2]

Вопрос с калибровочными константами остается открытым!!! Недостаток модели.

[1] Cakmakcioglu, S. C., Bas, O., and Kaynak, U., A Correlation-Based Algebraic Transition Model, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 21, 2018, pp. 3915–3929[2]

[2] Cakmakcioglu, S. C., Bas, O., Mura, R., and Kaynak, U., "A Revised One-Equation Transitional Model for External Aerodynamics," AIAA Paper 2020-2706, June 2020, doi:10.2514/6.2020-2706 [3] Stabnikov, A.S., Garbaruk, A.V.: Analysis of the abilities of algebraic laminar-turbulent transition models. J. Phys.: Conf. Ser. 1135, 012104 (2018).

Значения

 $\chi_1 = 0.00$

 $\chi_1 = 1$ и $\chi_2 = 0.0005$

Центральный институт авиационного моторостроения имени П.И. Баранова

Ламинарно-турбулентный переход на пластине

Ламинарно-турбулентный переход на пластине

Геометрия

Расчетная сетка

43 тыс. ячеек

В продольном направлении 440 ячеек, 400 на пластине в поперечном направлении – 100 ячеек с поджатием к стенке, при этом у+ < 1

Проводится псевдо-трехмерный расчет турбулентного течения в стационарной постановке.

В результате

Проведено сравнение с экспериментальными данными для плоских пластин с нулевым градиентом давления по распределению коэффициента трения (*C_f*) по длине пластины (Rex), эксперименты с различными параметрами потока:

- T3A-[1]
- T3B [1]
- Schubauer & Klebanoff [2]

Входные параметры

N	Ти , %	Re	U,м/с	р,Па	Т, К	v_t/v_l	Валидационный параметр
1 (S&K)	0.18	3.4×10 ⁶	51.1	101325	288	0.01	
2 (T3A-)	0.9	1.4×10 ⁶	19.8	101325	288	0.01	C_f
3 (T3B)	6	6.3×10 ⁵	9.4	101325	288	0.01	

[1] Savill AM. Some recent progress in the turbulence modelling of by-pass transition. In: RMC So, CG Speziale and BE Launder (eds) Near-wall turbulent flows. New York: Elsevier, 1993, p.829

[2] Schubauer G.B., Klebanoff P.S. Contribution on the Mechanics of Boundary Layer Transition. NACA Technical Note No. TN-3489. 1955

Естественный переход. Пластина S&K. Модель SA-BC. Влияние χ_1 и χ_2 .

Константы χ_1 и χ_2 , входящие в уравнение для γ_{BC} , требуют индивидуальной калибровки для каждой конкретной реализации расчетного кода и численной схемы. Также известно, что χ_2 оказывает большее влияние на результат, чем χ_1 .

Проверка констант, установленных авторами модели → корректировка

Более близкое к экспериментальному распределение коэффициента трения при $\chi_2 = 0.000598$

При $\chi_1 = 0.1$ получено наиболее близкое к экспериментальному распределение C_f

Вынужденный (байпасный) переход . пластина ТЗА-. Модель SA-BC Влияние χ_2 .

$$\chi_1 = 0.002$$
 во всех расчетах

Также при
$$\chi_2 = 5$$
 и $\chi_2 = \frac{5}{Re}$ не получается ЛТП $\chi_2 = \mathbf{0.001} = \frac{1.4 \cdot 10^3}{Re}$

Распределение коэффициента трения, полученное с помощью модели SA-BC (Лазурит) лучше совпадает с экспериментальным по сравнению с распределениями, полученными с помощью моделей SST γ-ReO и SST γ

Вынужденный (байпасный) переход . пластина ТЗВ. Модель SA-BC Влияние χ_2 .

SA-BC (Лазурит) точнее описывает ламинарную часть, но переход к турбулентному ПС при этом происходит немного раньше, чем у SST-моделей, немного завышено трение после перехода

 $\chi_2 = \mathbf{0.0008} \div \mathbf{0.001} = \frac{5.04 \div 6.3 \cdot 10^2}{Re}$

Константы модели SA-BC для различных пластин:

Для экспериментов серии Т3 коэффициенты модели SA-BC вне зависимости от числа Рейнольдса и интенсивности турбулентности потока получили $\chi_1 = 0.002$ и $\chi_2 = 0.001$. Нет зависимости от числа Рейнольдса.

Для эксперимента S&K $\chi_1 = 0.01$ и $\chi_2 = 0.000598$

LINA I

Центральный институт авиационного моторостроения имени П.И. Баранова

Ламинарно-турбулентный переход на аэродинамическом профиле NACA0021

Геометрия профиле NACA0021 и режимные параметры.

Геометрия

Длина хорды с=125мм

Расчетная сетка 113 тыс. ячеек, квази 3D у+ <0.3 для всех расчетов

Постановка

Псевдо-трехмерный расчет обтекания профиля NACA0021 в стационарной постановке.

Входные параметры

Ν	Ти, %	α, град	Re	U,м /с	р,Па	Т, К	v_t/v_l	Валидационный параметр
1	0.6	0, 2.5, 5, 7.5, 10, 12.5, 15, 17, 18, 19, 20, 22.5, 25, 27.5	2.66×10 ⁵	31	101350	288	0.01	C _{ya}

[1] Swalwell, K. E., "The effect of turbulence on stall of horizontal axis wind turbines," Ph.D. thesis, Monash University, 2005

[2] Menter F.R., Smirnov P.E., Liu T., Avancha R. A one-equation local correlation based transition model. Flow, Turbulence and Combustion. 2015;95(4):583-619

[3] Cakmakcioglu, S. C., Mura, R., "A Revised One-Equation Transitional Model for External Aerodynamics - Part I: Theory, Validation and Base Cases," AIAA Aviation Forume, June 2020, doi:10.2514/6.2020-2714

Влияние параметров расчетной сетки

Название сетки	Общее количество ячеек	Количество ячеек вдоль профиля	у+
Сетка 1	46000	201	0.5-1.5, вблизи точки торможения 3.5
Сетка 2	112000	371	0.2-1, вблизи точки торможения 2
Сетка 3	113000	351	0.01-0.1, вблизи точки торможения 0.2

Рекомендации для сетки:

каждая зона отрыва должна содержать как минимум 20 ячеек вдоль потока,

в пограничном слое должно быть достаточное количество ячеек для адекватного описания перехода, желательно, около 20-30 ячеек, а также чтобы у+<0.5, подобные рекомендации также приведены в статье [2]</p>

ЦИАЛ

Подбор коэффициента χ_2 в модели SA-BC

 $\chi_1 = 0.002$ коэффициенты аэродинамических сил при угле атаки α =20°

Χ ₂	Pac	чет	Эксперимент		
	C _{ya}	C _{xa}	C _{ya}	C _{xa}	
0.00001	0.9182	0.1567			
0.0001	0.8967	0.1612			
0.0005	0.8831	0.1642			
0.001	0.8524	0.1709			
0.002	0.794	0.185			
0.003	0.5278	0.266	0.4509	0.207	
0.005	0.5256	0.267	0.4508	0.287	
0.01	0.523	0.2685			
0.1	0.509	0.2734			
1	0.5037	0.275			
5	0.5039	0.275			
10	0.5039	0.275			

Аэродинамические характеристики профиля

[1] Swalwell, K. E., "The effect of turbulence on stall of horizontal axis wind turbines," Ph.D. thesis, Monash University, 2005

[2] Menter F.R., Smirnov P.E., Liu T., Avancha R. A one-equation local correlation based transition model. Flow, Turbulence and Combustion. 2015;95(4):583-619

[3] Cakmakcioglu, S. C., Mura, R., "A Revised One-Equation Transitional Model for External Aerodynamics - Part I: Theory, Validation and Base Cases," AIAA Aviation Forum, June 2020, doi:10.2514/6.2020-2714

При расчете с помощью модели SA коэффициент подъемной силы до угла атаки 15° ниже, чем в эксперименте, отклонение от эксперимента до 28%, для модели SA-BC отклонение не больше 13%.

Также не происходит предсказывания режима глубокого срыва, подъемная сила в расчетах моделью SA после угла атаки 15° уменьшается постепенно, однако этот режим виден в экспериментальном исследовании в районе углов атаки 15-17.5°. Подобное резкое уменьшение подъемной силы наблюдается при расчете обтекания профиля с помощью модели SA-BC также начиная с 15° до угла атаки 20°.

При углах атаки больше 20° видно, что коэффициент подъемной силы при расчете SA-BC имеет лучшее совпадение с экспериментом, отклонение не более 17%, в то время как при расчете моделью SA различие с экспериментальными данными составляет до 45%

Обтекание профиля при больших углах атаки: SA vs SA-BC

Получено, что использование модели SA-BC позволяет описать локальные отрывные зоны на профиле, вызванные ЛТП и, как следствие, позволяет с большей точностью определить аэродинамические характеристики профиля, чем при использовании модели SA

ШИАТ

Ламинарно-турбулентный переход в плоской решетке компрессорных лопаток

Геометрия лопаток и режимные параметры

Figure 75. Double-circular-arc blade profile

Tu , %	і, град	Re	Vx,м/с	Vy,м/с	р1,Па	р2,Па	Т, К	v_t/v_l	Валидационны й параметр
0.18	-1.5	5.01×10 ⁵	20.47	25.73	100968	101350	293	0.01	C_p, C_f

Расчетная сетка 268 тыс. ячеек, квази 3D y+ <0.5 Геометрия, режимные параметры и результаты эксперимента взяты из отчета [1]

[1] Zierke, W. C., and Deutsch, S., The Measurement of Boundary Layers on a Compressor Blade in Cascade, Vols. 1 and 2, NASA CR 185118, 1989

[2] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications, Journal of Turbomachinery · July 2006, DOI: 10.1115/1.2184353

[3] P. Malan, K. Suluksna and E. Juntasaro Calibrating the γ-ReθTransition Model for Commercial CFD, 47th AIAA Aerospace Sciences Meeting, Jan 2009

Центральный институт авиационного моторостроения имени П.И. Баранова

Поля параметров течения. Сравнение с расчетами других авторов.

ПМ Лазурит

 $\chi_1 = 0.002$ и $\chi_2 = 0.001$

Tu (percent)

[1] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications, Journal of Turbomachinery · July 2006, DOI: 10.1115/1.2184353

Распределение С_Р и С_f вдоль поверхности лопаток . Сравнение с экспериментом и расчетами других авторов.

Распределение коэффициента трения на стенке с повышенным давлением хорошо совпадает с экспериментальным распределением, виден ламинарный участок ПС, переходная часть, турбулентный ПС.

Для стороны с пониженным давлением в экспериментальном исследовании на всей длине стенки наблюдается турбулентный ПС, к концу стенки, в районе точки x=0.8, где наблюдается развитая отрывная зона, происходит уменьшение коэффициента трения. В расчете получается несколько иная картина распределения трения: сначала происходит резкий переход от ЛПС к ТПС, как раз после отрывного «пузыря» у точки торможения, далее он реламинаризируется, а потом снова происходит ЛТП в районе x/c=0.4 и к концу стенки трение также, как и в эксперименте уменьшается

 [1] Zierke, W. C., and Deutsch, S., The Measurement of Boundary Layers on a Compressor Blade in Cascade, Vols. 1 and 2, NASA CR 185118, 1989
 [2] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications, Journal of Turbomachinery · July 2006, DOI: 10.1115/1.2184353

Адаптация ПМ Лазурит для моделирования течения во вращающейся системе отсчета

Система уравнений Навье-Стокса во вращающейся СО

Систему уравнений Навье-Стокса во вращающейся СО можно записать в двух формах [1]: относительно вектора относительной скорости \vec{v}_r и относительно вектора абсолютной скорости $\vec{v} = \vec{v}_e + \vec{v}_r$. Для численных расчетов как правило используется вторая форма записи. Она имеет следующий вид:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \vec{\nabla} [\rho(\vec{v} - \vec{v}_e)] = 0\\ \frac{\partial (\rho \vec{v})}{\partial t} + \vec{\nabla} [\rho \vec{v} \otimes (\vec{v} - \vec{v}_e)] = -\vec{\nabla} p + \vec{\nabla} \overline{\Pi} - \rho \vec{\omega} \times \vec{v}\\ \frac{\partial \rho E}{\partial t} + \vec{\nabla} [\rho E(\vec{v} - \vec{v}_e)] = -\vec{\nabla} (p \vec{v}) + \vec{\nabla} (\overline{\Pi} \vec{v}) + \vec{\nabla} (k \vec{\nabla} T) \end{cases}$$

Здесь $\vec{v}_e = \vec{\omega} \times \vec{r}$ – переносная скорость, $\vec{\omega}$ – вектор угловой скорости, $\overline{\Pi}$ – тензор напряжений, $(\overline{\Pi})_{ij} = \tau_{ij} = \mu \left(-\frac{2}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} + \frac{\partial v_i}{\partial x_i} + \frac{\partial v_j}{\partial x_i} \right)$, $E = U + \frac{v^2}{2}$ – полная энергия.

 Абалакин, И.В. Многомодельный подход к оценке аэродинамических и акустических характеристик винта вертолета с помощью вычислительного эксперимента / И.В. Абалакин, В.Г. Бобков, Т.К. Козубская // Препринты ИПМ им. М.В.Келдыша. – 2018. – № 47. – 32 с. doi:10.20948/prepr-2018-47

Модификация метода Роу

В векторе конвективных потоков в системе уравнений Навье-Стокса во вращающейся СО появляется дополнительный поток \overline{F}_{ei} , обусловленный вращением сетки:

$$\overline{F}_i^r = \overline{F}_i - \overline{F}_{ei} = \overline{F}_i - v_{ei}\overline{U}, i = x, y, z,$$

где \overline{F}_i – вектор конвективных потоков системы уравнений Навье-Стокса в неподвижной СО, v_{ei} – *i*-я компонента переносной скорости, \overline{U} – вектор консервативных переменных.

Вид формулы для определения потока на грани расчетной ячейки в методе Роу [1] при вращения не изменяется:

$$\bar{F}_{i+\frac{1}{2}}^{r} = \frac{1}{2} \left[(\bar{F}_{L}^{r} + \bar{F}_{R}^{r}) - |\bar{A}^{*r}| (\bar{U}_{R} - \bar{U}_{L}) \right].$$

Однако величины потоков слева и справа от грани $ar{F}^r_{L,R}$ и матрица Якоби $ar{A}^{*r}$ определяются иначе:

$$\overline{F}_{L,R}^{r} = \overline{F}_{L,R} - v_{en}\overline{U}_{L,R},$$
$$\overline{\overline{A}}^{*r} = \overline{\overline{A}}^{*} - \overline{\overline{I}}v_{en},$$

где \bar{A}^* и $\bar{F}_{L,R}$ – матрица Якоби для метода Роу и потоки слева и справа от грани в неподвижной СО, а v_{en} - скорость грани, обусловленная вращением, в проекции на нормаль. Нетрудно показать, что матрицы \bar{A}^* и \bar{A}^{*r} имеют одинаковый набор правых собственных векторов $\bar{R}^{(i)} = \bar{R}^{r(i)}$, а их собственные числа связаны следующим соотношением:

$$\lambda_i^r = \lambda_i - v_{en}.$$

1. Roe, P. L. Approximate Riemann Solvers, Parameters Vectors, and Difference Schemes / P. L. Roe // J. Comp. Phys. – 1981. – V. 43. – P. 357-372.

Модификация метода Роу

Так как переносная скорость \vec{v}_e зависит от расстояния до центра вращения, а грани ячеек в общем случае являются протяженными в радиальном направлении, то встает вопрос определения величины v_{en} . Как правило, в случае конечнообъемных методов v_{en} рассчитывается таким образом, чтобы при равномерном стационарном потоке и при отсутствии деформации сетки суммарный объемный расход, обусловленный вращением, через поверхность каждой ячейки был равен нулю. Т.е. должно выполняться условие:

$$\sum_{k=1}^{6} S_{ek} = 0,$$

где $S_{ek} = \oint_{A_k} (\vec{\omega} \times \vec{r}) \cdot \vec{r} dA$ — объемный расход, обусловленный вращением, через *k*-ую грань. В работе [1] показано, что обеспечить выполнение вышеприведенного условия для четырехугольной грани возможно, если определять S_{ek} следующим образом:

$$S_{ek} = \left(\vec{\omega} \times \vec{r}_{o1}^k\right) \cdot \vec{n}_1^k A_1^k + \left(\vec{\omega} \times \vec{r}_{o2}^k\right) \cdot \vec{n}_2^k A_2^k,$$

где $\vec{r}_{o1,2}^k$ - радиус-векторы геометрических центров треугольников, полученных делением грани по одной из диагоналей; $\vec{n}_{1,2}^k$ и $A_{1,2}^k$ - нормали и площади соответствующих треугольников.

Нормальная составляющая переносной скорости *k*-ой грани определяется следующим образом:

$$v_{en}^k = S_{ek}/A_k \, .$$

^{1.} Drofelnik, J. Massively parallel time– and frequency–domain Navier–Stokes Computational Fluid Dynamics analysis of wind turbine and oscillating wing unsteady flows: PhD Thesis / Drofelnik Jernej; University of Glasgow. – 2017. – 196 pp.

Вращение винта в режиме висения

Режимные параметры

- Геометрия лопастей винта соответствует экспериментально исследованной в работе [1].
- Для моделирования выбран один из экспериментально исследованных режимов течения: угол установки лопастей 8°;
 частота вращения 650 об/мин; концевое число Маха 0.225.
- Caradonna, F.X. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover: NASA Technical Memorandum 81232 / F.X. Caradonna, C. Tung. – NASA, 1918. – 58 pp.

Параметры расчетной области и ГУ

- Размеры расчетной области: диаметр 4 м, высота 5 м, расстояние от верхней границы до винта 1 м, радиус винта R=1.143 м.
- Число узлов расчетной сетки: 5.8×10⁶.
- Метод моделирования URANS
- Граничные условия
- Верхняя и боковая границы расчетной области рассматривались как область входа. На них задавалось полное давление, температура и направление скорости набегающего потока. Направление скорости определялось таким образом, чтобы в каждой точке границы поток был направлен к центру винта.
- На нижней границе расчетной области задавалась комбинированное ГУ. В каждой ячейке в зависимости от направления скорости в ближайшей ячейке внутри расчетной области использовалось либо условие входа, либо условие выхода. В ячейках с условием входа задавались такие же параметры, как на верхней и на боковой границах. В ячейках с условием выхода задавалось статическое давление.
- Поверхность втулки и лопаток адиабатическая стенка. При этом втулка задавалась неподвижной.

Общий вид расчетной области

Вращение винта в режиме висения. Результаты

Изо-поверхности Q-критерия, раскрашенные по модулю скорости

Вращение винта в режиме висения. Результаты

Распределение коэффициента давления в различных сечениях лопасти

r/*R*=0.8

1,2

1. Caradonna, F.X. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover: NASA Technical Memorandum 81232 / F.X. Caradonna, C. Tung. – NASA, 1918. – 58 pp.

1,2

r/R=0.96

2. Бобков, В.Г. Методика расчета аэродинамических характеристик винтов вертолета на основе реберно-ориентированных схем в комплексе программ NOISEtte / В. Г. Бобков, И. В. Абалакин, Т. К. Козубская // Компьютерные исследования и моделирование. – 2020. – т. 12, вып. 5. – С. 1097–1122.

0,9

0,8

0,7

Центральный институт авиационного моторостроения имени П.И. Баранова

Спасибо за внимание!

111116, Россия, Москва, ул. Авиамоторная, 2 www.ciam.ru **Тел.:** +7 (499) 763 57 47 **E-mail:** info@ciam.ru