

Математическое моделирование в задачах водородной безопасности

Глотов В.Ю., Канаев А.А.

ИБРАЭ РАН Институт проблем безопасного развития атомной энергетики РАН, Москва

glotov-v@yandex.ru

Водородная взрывобезопасность АЭС

Упрощенная схема контейнмента с выделенной зоной инжекции и схема аппроксимации новой зоны инжекции

Безопасность водородной энергетики

Honda FCX clarity	Parameters		
Storage pressure [1]	35 MPa		
Storage volume [1]	171 L		
TPRD diameter	4.2 mm		
Storage temperature	20 °C		

[1] 2009 Honda FCX Specifications. http://www.hondaclarity.org/.

- Основные изучаемые процессы
 - Истечение
 - Распространение
 - Горение/детонация
- Сопутствующие процессы
 - Струи (дозвук/сверхзвук)
 - Естественная конвекция
 - Турбулентность
 - Стратификация
 - Конденсация пара
 - Теплоперенос излучением
- Влияние работы систем безопасности
 - Рекомбинаторы, спринклеры, теплообменники

Код CABARET-SC1

ЗАДАЧИ

- 1. Повышение прогнозных возможностей:
- неявное моделирование подсеточных масштабов турбулентности без использования настроечных параметров с помощью методики КАБАРЕ. Анализ сеточной сходимости решения.
- 2. Повышение вычислительной эффективности:
- сжимаемое и слабосжимаемое приближения для «быстрых» и «медленных» процессов;
- асинхронное интегрирование по времени;
- оптимизация MPI-обменов (ISend, IRecv).

Математическая модель

<u>Модель многокомпонентной смеси газов для «медленных» течений (М<<1)</u>

$$\begin{cases} \frac{\partial \rho_{k}}{\partial t} + div(\rho_{k}\vec{u}) = -div(\vec{j}_{k}), & k = 1,...,N \\ \frac{\partial \rho u_{i}}{\partial t} + div(\rho u_{i}\vec{u}) + \nabla_{i}P^{*} = \nabla_{i}\tau_{ij} + \rho g_{i}, & i, j = 1,...,3 \\ \frac{\partial \rho c_{V}T}{\partial t} + div(\rho c_{P}T\vec{u}) = -div\left(\vec{q} + \left(\sum_{k=1,N} c_{p,k}\vec{j}_{k}\right)T\right) + Q_{s} \end{cases}$$

$$P_0(t) = \frac{\int_V \rho \varepsilon dV}{\int_V \frac{1}{\gamma - 1} dV}, \quad \nabla P_0 = 0$$

- «термодинамическое» давление

 $P^{*} = c^{2} \left(\rho - \rho_{0}^{*} \right),$ $\rho_{0}^{*} \left(t, \vec{r} \right) = \rho \left(t, \vec{r} \right) \left(P_{0} \left(t \right) / P \left(t, \vec{r} \right) \right)^{\frac{1}{\gamma(t, \vec{r})}}$

- «динамическое» давление (приближение слабой сжимаемости, вводится искусственная сжимаемость)

Нагрев газа при адиабатическом сжатии

1D область L=100м, S=1x1м²

Начальное состояние: воздух P=101325Па, T=300К ГУ на стенках: проскальзывание, Q=0Bт/м² ГУ на входе: пар с расходом q=0,5кг/с и T=300К Теплопроводность, вязкость и диффузия выключены

$$\tilde{T}\left(\tilde{x},t\right) = \begin{cases} \tilde{T}_{in} \cdot \left(1 - \tilde{x}(t)\right)^{-\gamma_a(\gamma_v - 1)/\gamma_v}, & \tilde{x} < \tilde{x}_i(t) \\ \tilde{T}_a(t), & \tilde{x} > \tilde{x}_i(t) \end{cases}$$

 $ilde{x}_{i}(t) = 1 - ilde{P}(t)^{-1/\gamma_{a}}$ - положение контактного разрыва $ilde{P}(t) = T_{a}(t)^{\gamma_{a}/(\gamma_{a}-1)}$ - давление

Уравнение для температуры воздуха

$$(\gamma_{v}-1)(\tilde{T}_{a}-1)+(\gamma_{a}-1)(\tilde{T}_{a}^{\gamma_{a}/(\gamma_{a}-1)}-\tilde{T}_{a})=\beta\gamma_{v}(\gamma_{a}-1)\tilde{T}_{in}$$

На контактном разрыве температура будет испытывать разрыв первого рода

Массовая доля воздуха

Температура

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Нагрев газа при адиабатическом сжатии (результаты)

Профиль температуры в момент времени t=100c

Профиль температуры в момент времени t=1000c

<u>Модель многокомпонентной смеси газов для «быстрых» течений (M~1,M>1)</u>

$$\begin{cases} \frac{\partial \rho_{k}}{\partial t} + div(\rho_{k}\vec{u}) = -div(\vec{j}_{k}), & k = 1,...,N \\ \frac{\partial \rho u_{i}}{\partial t} + div(\rho u_{i}\vec{u}) + \nabla_{i}P = \nabla_{i}\tau_{ij} + \rho g_{i}, & i, j = 1,...,3 \\ \frac{\partial \rho E}{\partial t} + div((\rho E + P)\vec{u}) = \nabla_{i}(\tau_{ij}u_{j}) + \rho(\vec{g},\vec{u}) - div\left(\vec{q} + \left(\sum_{k=1,N} c_{p,k}\vec{j}_{k}\right)T\right) + Q_{s}, & i, j = 1,...,3 \end{cases}$$

$$E = \frac{1}{2} (\vec{u}, \vec{u}) + \varepsilon$$
$$P = (\gamma - 1) \rho \varepsilon$$

Задача Римана о распаде произвольного разрыва

Задача Сода

 $(\rho, p, u)_L = (10, 10, 0)$ $(\rho, p, u)_R = (0.125, 0.1, 0)$

Разбегание 2-ух сверхзвуковых потоков

 $(\rho, p, u)_L = (1, 0.4, -2)$ $(\rho, p, u)_R = (1, 0.4, 2)$

2,00

1,80

1,60 1,40

£ 1,20

0,80 Okopo

0,60

0,40

0,20

Асинхронное интегрирование уравнений по времени

ИБРАЭ

РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

NGC

2.8 2.6 2.4 2.2 2

1.8

1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8

 $2^{n_g - i}$.

 n_{ci}

Elem[1] = 898057 / 2151630 (41.738449%) Elem[2] = 1232828 / 2151630 (57.297398%) Elem[3] = 20745 / 2151630 (0.964153%) acceleration = 2.497037

12

Асинхронное интегрирование по времени

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Примеры расчетов 1. Распространение водорода

Программы международных экспериментальных исследований в области обеспечения ВБ на АЭС

Программа	Годы проведения	Основные явления		
OECD/NEA: SETH	2001-2006	1. Изучение механизмов, приводящих к стратификации водорода (струи и всплывающие струи, транспорт и стратификация)	-	
OECD/NEA: SETH-2	2007-2010	1. Изучение механизмов разрушения стратификации (струи с отрицательной плавучестью, всплывающие струи, работа систем безопасности – форсунка, теплообменник-конденсатор, рекомбинатор (тепловой эффект))	-/+	
EURATOM- ROSATOM: ERCOSAM- SAMARA	2010-2014	 Формирование стратификации легкого газа в сценарии постулируемой ТА с потерей теплоносителя (LOCA) на LWR Разрушение стратификации легкого газа при работе систем безопасности в отмасштабированных условиях 	+	
OECD/NEA: HYMERES	(2013-2016)	 Разрушение стратификации струями в более реалистичных условиях (взаимодействие струй с препятствиями) Влияние комбинированной работы систем безопасности на распределение легкого газа Процессы перемешивания, связанные с работой систем безопасности 	+	
OECD/NEA: HYMERES-2	с 2017 по н.в.	 Расширение базы данных по разрушению стратификации струями, взаимодействующими с препятствиями Анализ влияния излучения Расширение базы данных по перемешиванию работой систем безопасности 	+	

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

15

Крупномасштабные многобоксовые экспериментальные установки

Экспериментальная установка PANDA (PSI, Швейцария) Объем 2-х сосудов 183,3 м³

Экспериментальная установка MISTRA (СЕА, Франция) Объем сосуда 97,6 м³

В экспериментах на крупномасштабной установке PANDA парциальное давление пара находится в пределах 0.8 и 1.3 бар. Можно вычислить «оптическую толщину» слоя

т= к Р L;

к="средний" коэффициент поглощения для пара (atm⁻¹ m-¹)

Аппроксимация по Планку (для т <<1): к_P= 18.4 (555.56/T) [1-0.054(555.56/T)²] = 18.4 atm⁻¹ m-¹ при 555.56К (288 °C) Аппроксимация по Росселанду (для т >>1): к_R~ 120 atm⁻¹ m-¹ при 555.56К и 1бар. Т.к. L=0(1);

т= 15-160 (в зависимости от условий) >> 1

Моделирование теплообмена излучением

Теплообмен со стенкой

$$W_g = -\varepsilon_{wg}\sigma \left(T_{wall}^4 - T_g^4\right)$$

$$\varepsilon_{wg} = \frac{\varepsilon_{g} \varepsilon_{wall}}{\varepsilon_{wall} + \varepsilon_{g} \left(1 - \varepsilon_{wall}\right)}$$

Модель Росселанда лучистой теплопроводности

$$k_{sum} = k + k_R, \quad k_R = \frac{16}{3}\sigma l_R T^3$$

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Размытие стратификации легкого пара струей горячего пара

Температура газа

18

Влияние теплообмена излучением на динамику размытия стратификации

Конденсация пара

Давление (Эксперимент РЕ4, фаза накачки пара)

Температура стенок

Скорость конденсации пара, сравнение с CFX PostTest (k-ω based SST)

Температура газа

Модель диффузионного слоя в приближении тонкой пленки

\mathcal{J} иффузионный поток пара $j_{i,v} = \frac{M_v}{M} \rho D \frac{\partial \ln(x_{i,g})}{\partial y}$

Конденсационный поток тепла на стенку

 $q_c'' = h_{fg} j_{i,v}$

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Размытие стратификации легкого пара диффузной струей горячего пара

С моделью излучения

Без модели излучения

Мольная доля гелия в зоне стратификации в сравнении с экспериментом

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Тепловой эффект работы рекомбинатора водорода

Конфигурация эксперимента НР2_1_2

Сценарий эксперимента НР2_1_2

Геометрия расчетной модели

1-3 млн. ячеек

Сетка в сечении ХҮ

Сетка на рекомбинаторе

ИБРАЭ

РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

CFD Weekend, 1 декабря 2019

27

Vessel 1

· Fluid TC;

Fluid TC and capillary;

O Capillary

D1_L26

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

D1_T20

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

650 650 30

D2_A20

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

D2_H20

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IERAE)

Fluid TC and capillary;

Fluid TO

D2_L15

0

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

D2_T20

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

GexCon D27(HySafe SBEP 5)

CFD Weekend, 1 декабря 2019

Геометрия расчетной модели

Сетка

1 млн. ячеек

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

RUSSIAN ACADEMY OF SCIENCES

РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт проблем безопасного развития атомной энергетики

Примеры расчетов 2. Истечение водорода

C. D. Donaldson and R.S. Snedeker. A study of free jet impingement. Part 1. Mean properties of free and impinging jets.

$$\eta_e = 1$$

 $\eta_{e} = 1,42$

 $\eta_e = 3,57$

40

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

 $\log_{10}(|
abla
ho|)$

CFD Weekend, 1 декабря 2019

N=3.57

Грубая сетка

Профиль продольной скорости по оси Z

Профиль давления по оси Z

Профили продольной скорости по оси R в различных сечениях Z/D

Эксперимент --- Грубая сетка — Подробная сетка

Полуширина струи в зависимости от Z/D

Истечение водорода из сосуда высокого давления

Моделирование дальнего поля струи с помощью моделей эффективного сечения

Table 2 — Conditions at the notional nozzle.								
Approach	Temperature (K)	Density (kg/m³)	Velocity (m/s)	Diameter (10 ⁻³ m)	Mass flow rate (10 ^{–3} kg/s)	Momentum flow rate (kg m²/s)	Enthalpy flux (kJ/s)	Net rate of energy flow (10 ³ kJ/s)
HD35-37 (1 mm nozzle diameter, 53.27 bar)								
Birch1984	287.6	0.0854	1292	5.262	2.4	3.1	10.2	2.01
Birch1987	287.6	0.0854	1984	4.247	2.4	4.76	10.2	4.73
Ewan	238.8	0.1029	1178	5.024	2.4	2.83	8.58	1.67
Schefer	287.6	0.0854	2001	4.228	2.4	4.81	10.2	4.82
Harstad	278.4	0.0882	510	8.241	2.4	1.23	9.92	0.32

Длина цилиндра : 1m

Диаметр цилиндра : 0.6m

Диаметр сопла: 5.262mm

Моделирование ближнего поля струи для нахождения параметров в эффективном сечении

	Число ячеек на	Число ячеек вдоль	Общее число
	диаметр сопла	оси Z	ячеек
Сетка	20	320	1 600 368

Бочка Маха

Расстояние до диска Маха

$$L/d \approx 4.8$$

 $L/D = 0.67\sqrt{P_0/P_\infty} \approx 4.9$

Диаметр диска Маха

$$D_{DM}/D \approx 2,4$$

 $D_{DM}/D = 0,36\sqrt{P_0/P_\infty - 3,9} \approx$

CFD Weekend, 1 декабря 2019

2,5

Заключение

- Проведенные валидационные исследования кода CABARET-SC1 на экспериментах по водородной безопасности, показали высокую точность соответствия расчетных и измеренных данных при условии учета всех определяющих процессов и использования достаточно подробной сеточной модели.
- Проведена адаптация физико-математических моделей в коде CABARET-SC1 для моделирования сверхзвуковых и трансзвуковых течений сжимаемых газовых смесей при больших перепадах давления и плотности. Развивается двухэтапный подход для моделирования задач истечения водорода из сосудов высокого давления (ближнее и дальнее поле струи).
- Дальнейшие планы разработка модуля для расчета задач горения и детонации.

RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE)

Спасибо за внимание