

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ ИМ. Н.Л. ДУХОВА"

Программный комплекс CSPH&VD³ с автоматической балансировкой вычислительной нагрузки для параллельного гидродинамического моделирования движения веществ в экстремальных состояниях методом SPH с использованием решения задачи Римана

Егорова Мария С., Дьячков С.А., Мурзов С.А., Григорьев С.Ю., Паршиков А.Н., Жаховский В.В.

Цели разработки

Высокопроизводительное моделирование сред с нестационарными свободными границами и разрывами сплошности

Образование капель [1]

Разрушение [3]

Удар и пробитие [4]

1. M. Van Dyke, "An album of fluid motion", 1982. 2. J.H.S. Lee, "The detonation phenomenon", 2008. 3. H. Schuler et. al. / Int. J. Imp. Eng. 32 (2006) 1635–1650. 4. G.R. Johnson / Int. J. Imp. Eng. 38 (2011) 456-472.

2

Выбор метода моделирования

Задачи характеризуются следующими *особенност ями*, влияющими на выбор численного метода моделирования:

- сильной неоднородностью пространственного распределения вещества;
- сложной формой движения поверхностей;
- сильными деформациями и разрывами сплошной среды.

Два пути численного решения:

• приближение гомогенной среды + модели межфазного обмена;

Выбор метода моделирования

Задачи характеризуются следующими *особенност ями*, влияющими на выбор численного метода моделирования:

- сильной неоднородностью пространственного распределения вещества;
- сложной формой движения поверхностей;
- сильными деформациями и разрывами сплошной среды.

Два пути численного решения:

- приближение гомогенной среды + модели межфазного обмена;
- прямое моделирование с учет ом мезост рукт уры мат ериалов (мезомоделирование) мет одами част иц (MD, SPH,)

3

Методы частиц (бессеточные) vs сеточные методы

Частица имеет характерный размер («диаметр»), плотность, скорость, энергию и т.д.

Образец

Сетка

Частицы в методе

Частицы фактически

4

Параллелизация для методов частиц

Мы разработали и применили алгоритм балансирующей декомпозиции [5], который подходит для *любого мет ода част иц с ограниченной област ью взаимодейст вия* и позволяет нам впервые решить множество задач, требующих высокой подробности разрешения расчетной области.

Ограниченная область взаимодействия означает, что все взаимодействия между частицами *локализованы в прост ранст ве*, т.е.

- каждая частица взаимодействует
 с небольшим числом соседей (MD)
- производные в частице вычисляются
 через значения в соседних частицах (SPH)
 MD среда

^{5.} S. Dyachkov et al. / Lobachevskii Journal of Mathematics 2017, vol. 38, no. 5, pp. 893–897.

Массивно-параллельная архитектура – архитектура вычислительной системы с физически распределенной памятью.

Распределенная память → физически разделенные данные.

Задачи декомпозиции:

- Как оптимально распределить данные?
- Как распределить данные так, чтобы необходимое время на обмен было минимизировано?
- Что делать, если процессы заканчивают расчет каждого шага не одновременно?

Массивно-параллельная архитектура – архитектура вычислительной системы с физически распределенной памятью.

Распределенная память → физически разделенные данные.

Задачи декомпозиции:

Как оптимально распределить данные?

прост ранст венно

- Как распределить данные так, чтобы необходимое время на обмен было минимизировано?
- Что делать, если процессы заканчивают расчет каждого шага не одновременно?

Массивно-параллельная архитектура — архитектура вычислительной системы с физически распределенной памятью.

Распределенная память → физически разделенные данные.

Задачи декомпозиции:

Как оптимально распределить данные?

прост ранст венно

 Как распределить данные так, чтобы необходимое время на обмен было минимизировано?

с минимальной площадью границы

 Что делать, если процессы заканчивают расчет каждого шага не одновременно?

Массивно-параллельная архитектура – архитектура вычислительной системы с физически распределенной памятью.

Распределенная память → физически разделенные данные.

Задачи декомпозиции:

Как оптимально распределить данные?

прост ранст венно

 Как распределить данные так, чтобы необходимое время на обмен было минимизировано?

с минимальной площадью границы

Что делать, если процессы заканчивают расчет каждого шага не одновременно?

т ребует ся алгорит м балансировки, перераспределяющий част ицы

Минимизация времени расчета при равномерном распределении нагрузки

- Что делать, если процессы заканчивают расчет каждого шага не одновременно?
 - т ребует ся алгорит м балансировки, перераспределяющий част ицы

Трассировка процессов, упорядоченная по «полезной» работе.

 Чем более равномерно распределена работа во время расчета, тем меньше общее время расчета на шаг.

Метод SPH с решением задачи Римана, или CSPH

SPH – Smoothed Particles Hydrodynamics

• Дискрет изация по прост ранст ву:

Дельтафункция: $f(\mathbf{r}) = \int_{\Omega} f(\mathbf{r}') \,\delta(\mathbf{r} - \mathbf{r}') \,d\mathbf{x}'$ Переход к $f(\mathbf{r}) = \lim_{h \to 0} \int_{\Omega} f(\mathbf{r}') \,W(|\mathbf{r} - \mathbf{r}'|, h) \,d\mathbf{r}'$ ядру: $\nabla f(\mathbf{r}) = \lim_{h \to 0} \int_{\Omega} f(\mathbf{r}') \nabla W(|\mathbf{r} - \mathbf{r}'|, h) \,d\mathbf{r}'$

$$f(\mathbf{r}_i) = \sum_{i=1}^{N} \frac{m_i}{\rho_j} f(\mathbf{r}_j) W_{ij} + \mathcal{O}(h^2)$$
$$\nabla f(\mathbf{r}_i) = \sum_{i=1}^{N} \frac{m_i}{\rho_j} f(\mathbf{r}_j) \nabla_i W_{ij} + \mathcal{O}(h^2)$$

|**x** − **x**′| ≤ кh область действия сглаживающего ядра

обычно ядро – многочлен. $abla_i W_{ij} = rac{\partial W_{ij}}{\partial r_{ij}} rac{r_{ij}}{h}$

SPH – Smoothed Particles Hydrodynamics

SPH-аппроксимация законов сохранения

$$\begin{split} & \frac{d\rho_i}{dt} = \rho_i \sum_j \frac{m_j}{\rho_j} \left(\overrightarrow{v_i} - \overrightarrow{v_j} \right) \cdot \nabla_i W_{ij} ; \\ & \frac{d\overrightarrow{v_i}}{dt} = -\frac{1}{\rho_i} \sum_j \frac{m_j}{\rho_j} \frac{P_i + P_j}{2} \cdot \nabla_i W_{ij} ; \\ & \frac{d(e_i + \frac{v_i^2}{2})}{dt} = \frac{1}{2\rho_i} \sum_j \frac{m_j}{\rho_j} \frac{P_i + P_j}{2} \left(\overrightarrow{v_i} - \overrightarrow{v_j} \right) \cdot \nabla_i W_{ij} . \end{split}$$

Система замыкается уравнением состояния.

SPH – Smoothed Particles Hydrodynamics

SPH-аппроксимация законов сохранения

$$\begin{aligned} \frac{d\rho_i}{dt} &= \rho_i \sum_j \frac{m_j}{\rho_j} \left(\overrightarrow{v_i} - \overrightarrow{v_j} \right) \cdot \nabla_i W_{ij} ; \\ \frac{d\overrightarrow{v_i}}{dt} &= -\frac{1}{\rho_i} \sum_j \frac{m_j}{\rho_j} \frac{P_i + P_j}{2} \cdot \nabla_i W_{ij} ; \\ \frac{d(e_i + \frac{v_i^2}{2})}{dt} &= \frac{1}{2\rho_i} \sum_j \frac{m_j}{\rho_j} \frac{P_i + P_j}{2} \left(\overrightarrow{v_i} - \overrightarrow{v_j} \right) \cdot \nabla_i W_{ij} . \end{aligned}$$

Система замыкается уравнением состояния.

• Проблема сжат ия-расширения част иц

$$\star \frac{d\rho_i}{dt} = \rho_i \frac{m_j}{\rho_j} (v_i - v_j) \cdot W'_{ij} = \rho_i \frac{m_j}{\rho_j} v_{ij} \cdot W'_{ij}; \qquad \text{sgn}\left(\frac{d\rho_i}{dt}\right) = \text{sgn}\left(\frac{d\rho_j}{dt}\right)! \\ \frac{d\rho_j}{dt} = \rho_j \frac{m_i}{\rho_i} (v_j - v_i) \cdot W'_{ji} = \rho_j \frac{m_i}{\rho_i} v_{ij} \cdot W'_{ij}. \\ (|W'_{ji}| = -W'_{ij}|)$$

CSPH = SPH + задача Римана [6]

SPH-аппроксимация законов сохранения

$$\begin{aligned} \frac{d\rho_i}{dt} &= 2\rho_i \sum_j \frac{m_j}{\rho_j} \left(\overrightarrow{v_i} - \overrightarrow{v_{ij}}^* \right) \cdot \nabla_i W_{ij}; \\ \frac{d\overrightarrow{v_i}}{dt} &= -\frac{2}{\rho_i} \sum_j \frac{m_j}{\rho_j} P_{ij}^* \nabla_i W_{ij}; \\ \frac{d(e_i + \frac{v_i^2}{2})}{dt} &= \frac{1}{\rho_i} \sum_j \frac{m_j}{\rho_j} P_{ij}^* \overrightarrow{v_{ij}}^* \cdot \nabla_i W_{ij}. \end{aligned}$$

Система замыкается уравнением состояния.

Для упругопласт ических сред

$$\frac{d\overrightarrow{v_i}}{dt} = \frac{2}{\rho_i} \sum_j \frac{m_j}{\rho_j} \overrightarrow{\sigma_{ij}^*} \frac{\partial W_{ij}}{\partial r_{ij}};$$
$$\frac{d(e_i + \frac{v_i^2}{2})}{dt} = -\frac{1}{\rho_i} \sum_j \frac{m_j}{\rho_j} \overrightarrow{\sigma_{ij}^*} \cdot \overrightarrow{v_{ij}^*} \frac{\partial W_{ij}}{\partial r_{ij}}.$$

A

6. A. N. Parshikov and S. A. Medin / J. Comp. Phys., vol. 180, no. 1, pp. 358–382, 2002.

.

9

Динамическая декомпозиция по Вороному (VD³)

Идея [7]

Пост роим на прост ранст ве, занят ом част ицами, диаграмму Вороного.

Определение (Диаграмма Вороного, VD) [8]:

- Набор точек {G_k}^{N_{V̂}}_{k=1} ∈ Ω назовем центрами (генераторами) диаграммы Вороного.
- 2. Ячейка диаграммы \hat{V}_k определяется множеством точек, ближайших к G_k :

$$\begin{split} \hat{V}_k &= \{ \vec{x} \in \Omega: \; | \; \vec{x} \; - \; \vec{g}_k | < | \vec{x} \; - \; \vec{g}_l |, \\ l &= 1, \dots, N_{\widehat{V}}, l \neq k \}, \end{split}$$

где \vec{g}_k — радиус-вектор точки \mathbf{G}_k .

3. $\left\{ \hat{V}_k \right\}_{k=1}^{N_{\widehat{V}}}$ есть диаграмма Вороного.

процесс 1, процесс 2, ..., процесс $N_{\hat{V}}$

Диаграмма Вороного на замкнутой области $\overline{\Omega}$

Пусть **G**_k (а следовательно, **Ŷ**_k) двигаются вместе с потоком частиц с поправкой на дисбаланс нагрузки в ячейках.

7. V. Zhakhovskii et al. / CCGrid 2005, vol. 2, pp. 848–854.

8. Q. Du, V. Faber, and M. Gunzburger / SIAM review, vol. 41, no. 4, pp. 637–676, 1999.

10

Расчетный образец

Выберем набор точек $\{G_k\}_{k=1}^{N_{\widehat{V}}}$. Каждую точку G_k соотнесем с процессом P_k .

Расчетный образец

- Выберем набор точек $\{G_k\}_{k=1}^{N_{\widehat{V}}}$. Каждую точку G_k соотнесем с процессом P_k .
- Каждый процесс ищет своих соседей по диаграмме.

Расчетный образец

Выберем набор точек $\{G_k\}_{k=1}^{N_{\widehat{V}}}$. Каждую точку G_k соотнесем с процессом P_k .

Каждый процесс ищет своих соседей по диаграмме.

Все ячейки наполняются частицами, при этом используется проверка положения частиц согласно определению диаграммы: частица относится к тому процессу, к генератору ячейки которого она ближе.

Выберем набор точек $\{G_k\}_{k=1}^{N_{\widehat{V}}}$. Каждую точку G_k соотнесем с процессом P_k .

- Каждый процесс ищет своих соседей по диаграмме.
- Все ячейки наполняются частицами, при этом используется проверка положения частиц согласно определению диаграммы: частица относится к тому процессу, к генератору ячейки которого она ближе.

11

Перед каждым перестроением диаграммы нужно:

1. Провести несколько шагов SPH-расчета.

Расчетный образец

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.

Расчетный образец

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

σ – параметр, контролирующий вес балансирующих смещений, σ ∈ [0,1].
 При σ = 0 ячейки Вороного привязаны к движению вещества.

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

σ – параметр, контролирующий вес балансирующих смещений, σ ∈ [0,1].
 При σ = 0 ячейки Вороного привязаны к движению вещества.

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

Перед каждым перестроением диаграммы нужно:

- 1. Провести несколько шагов SPH-расчета.
- Измерить нагрузку L = t_w/t_e в каждом процессе (в ячейке) как отношение времени на счет к общему времени, включая простой.
- 3. Вычислить смещения генераторов: $\Delta \vec{r}_i = (1 - \sigma) \Delta \vec{r}_{mc, i} + \sigma \Sigma_j \Delta \vec{g}_{ij}$, где: $\Delta \vec{r}_{mc,i}$ – смещение геометрического центра ячейки из-за движения ее частиц $\Delta \vec{g}_{ij} \sim r_c (L_i - L_j)$ – балансирующие смещения центра ячейки

Балансировка на примере статической задачи

- $L_x = L_y = 1$ м, $L_z = 0.015$ м
- Периодические граничные условия
- Олово в покое
- 52 миллиона частиц
- N общее число процессов:
 32, 64, 128, 256, 512, 1024
- 2D декомпозиция по Вороному с начальным дисбалансом нагрузки

Балансировка на примере статической задачи

Тест на сильное масштабирование

- Наблюдается почти линейное масштабирование при использовании от 32 до 1024 ядер
- Балансировочный алгоритм сокращает время на ожидание коммуникаций

Почему «завал» на 1024 процессорах?

Почему «завал» на 1024 процессорах?

- При уменьшении размера ячейки Вороного зона, подлежащая обмену для осуществления расчета взаимодействия между частицами, попавшими в разные ячейки, ст ановит ся больше.
- Обмен информацией «маскирует ся» расчет ом «внутренних» частиц с использованием неблокирующих коммуникаций, но при большей доле обменной области эффективность «маскировки» снижается.

17

Работа алгоритма декомпозиции в динамических задачах

Пример динамической задачи для MD при большом начальном дисбалансе

Пример динамической задачи для SPH

A

Пример динамической задачи для SPH

Пример динамической задачи для SPH

Тест на сильную масштабируемость

Тест на сильную масштабируемость

Решенные задачи

Пыление металлической поверхости при выходе на нее ударной волны

Распределение плотности в задаче кумуляции. Большие относительные перемещения обрабатываются естественным образом. Внизу - динамическая декомпозиция по Вороному.

- Уравнение состояния в форме Ми Грюнайзена для олова.
- Размеры образца: *H* = 0.55 мм, *L* = 1.65 мм, *W* = 0.2 *H*.
 Периодические ГУ по осям *z*, *y*. T = 2.9 мкс.
- Образец ударяется о жесткую стенку (потенциальный барьер) сс скоростью v = 930 m/s.
- 9.6 млн частиц. 4 часа на 192 ядрах (процессоры Intel Xeon E312х)

Рисунок из Buttler et al. / J. Fluid Mech. V. 703, p. 60-84 (2012)

Пыление металлической поверхости при выходе на нее ударной волны

Рисунок из Buttler et al. / J. Fluid Mech. V. 703, p. 60-84 (2012)

Взрыв проволочек

Рентгенограмма никелевой проволочки ($I_{wire} = 240$ кA) и витой пары ($I_{wire} = 1.2$ MA)*

26

Взрыв проволочек

МD-моделирование* мгновенно нагретого до T(5 nc) = 6 кK цилиндра из Ni радиусом $R_0 = 100 \text{ нм}$ (инерционное удержание). $\rho(x; y)$ осреднена по толщине $L_z = 40 \text{ нм}$.

Результаты масштабируются до реального микромасштаба?

^{*} S. A. Pikuz, et al. / Phys. Rev. Let. Vol. 83. No. 4313

Взрыв проволочек

- Используется уравнение состояния Ми Грюнайзена для алюминия.
- Размеры образца *H* = 2 мкм, *R* = 6 мкм. Периодические ГУ по оси *z*.
 T = 9.6 нс. 3.6 & 7.2 млн частиц. 1 час на 96 ядрах & 24 часа на 192.
- Условие разрушения: если
 *p*_{i,j} <
 *p*₀/
 1.1</sub>
 (соотношение, получаемое в MD расчете), связь между частицами не учитывается.
- В коде еще нет модели поверхностного натяжения.
- Начальные условия получены МГД моделированием* **.

2R

Radiograph image

Распределение плотности и декомпозиция до 9,6 нс и 34 нс. Воспроизводится кавитация.

*S. I. Tkachenko, et al. / Plasma physics reports 38.1 (2012): 1-11, **V. E. Fortov, et al. / Nucl. Instr. Meth. Phys. Res. A 415:604, 1998

- Моделирование
 сверхтвердых керамик
 (B₄C, SiC, AIN) с помощью
 улучшенной модели
 джонсона Холмквиста
- Модель Джонсона Кука для металлов
- Модель откола

Ударник (В₄С)

Мишень (B₄C)

Окно (LiF)

Эксперименты Grady, Vogler et al.

1.2 BC5 Grady et al. Vogler et al BC-XI SPH Моделирование SPH 2.5BC-X 1.0сверхтвердых керамик 2.0BC D $\widehat{\infty}^{0.8^{\downarrow}}$ (s/mx)BC-VII (B₄C, SiC, AIN) с помощью 🚊 BC-VI улучшенной модели -^e 0.4 ~ ^{1.0} BC-VI Джонсона – Холмквиста 0.2 0.5: 10:35 mm $2076\,\mathrm{m/s}$ B.C LiF Модель Джонсона – Кука LiF 0.0 0.0 2.53.0 10 1.5 20 $t^{0.5}_{t (\mu s)} = 0.6$ 0.2 0.3 0.4 0.5 0.7 0.8 0.9 $t \ (\mu s)$ для металлов Валидация моделей Модель откола по волновым профилям VISAR Откольные процессы Ударник (В₄С) Мишень (В₄С) Окно (LiF)

29

- Моделирование сверхтвердых керамик (B₄C, SiC, AIN) с помощью улучшенной модели Джонсона – Холмквиста
- Модель Джонсона Кука для металлов
- Модель откола
 Откольные

Прохождение ударной волны через слой частиц

XY, XZ и YZ виды

Золотые частицы диаметром 9 мкм

Прохождение ударной волны через упакованный баллистически слой частиц

изометрическое изображение распределения материала различных частиц после прохождения УВ через слой (t=0,3 мкс)

Расчет 8.2 млн. частиц на 128 СРU-ядрах (размер частицы ~ 2,5 · 10⁻⁷ м)
 5 часов

• УВ отражается от границы взвеси

• Профиль прошедшей УВ меняет форму

 В зоне, где «чистый» флюид вошел во взвесь, начинает устанавливаться скоростное равновесие

• Не наблюдается компактирования зоны фильтрации

• Процесс продолжается

• Процесс продолжается

- Процесс продолжается
- Расчет 25 млн. частиц на 512 СРU-ядрах сутки (вся задача) до 150 нс

Особенности кода

- Динамическая декомпозиция расчетной области между процессами на ячейки Вороного с локальной автоматической балансировкой нагрузки (только между соседними ячейками)
- Вывод данных через мастер-процесс
- Параллелизация с помощью МРІ внутри и между узлами
- Язык программы: Fortran2003 (30000 строк)
- Входные данные: структурированный текстовый файл
- Форматы данных собственной разработки:
 1D профили, 2D карты сечений, частицы

Заключение

- Нами реализован алгоритм автобалансирующей декомпозиции по Вороному VD³ для гидродинамических SPH расчетов.
- Тест на статической задаче показывает быстрое уменьшение времени ожидания коммуникаций за счёт алгоритма автоматической балансировки нагрузки.
- Наблюдается почти идеальная сильная масштабируемость: ускорение для сбалансированной системы из 50 млн SPH частиц растет с 128 до 1024 процессов почти линейно.
- Тесты на динамических задачах показывают ускорение расчета в разы (в зависимости от неоднородности распределения частиц) при использовании VD³ по сравнению со статической декомпозицией. Автобалансировка позволяет поддерживать хорошую загрузку процессов в течение всего расчета.

Заключение

- Представленный алгоритм VD³ подходит для любого метода частиц с коротким радиусом взаимодействия.
- Использование CSPH&VD³ позволяет получать качественно новые результаты в силу расширения приложений метода сглаженных частиц на более сложные задачи.
- Получены качественно новые решения задач пыления, прохождения ударной волны через слой баллистически упакованных частиц, разрушения керамик и т.д.

СПАСИБО!

