

«Отечественные СFD коды – 2020»

Код MCFL расчета нестационарных многокомпонентных течений

В. Борисов, <u>В. Жуков</u>, М. Краснов, Б. Критский, H. Новикова, О. Феодоритова vic.zhukov@gmail.com Институт прикладной математики им. М. В. Келдыша РАН

28-29 ноября 2020, Москва

План

- Код MCFL (Multicomponent Flows)
- Принцип расщепления по физическим процессам
- Явно-итерационная схема интегрирования по времени параболических уравнений
- Схема интегрирования по времени уравнений
 Навье-Стокса / многокомпонентных реагирующих
 течений
- Численные примеры
- Заключение

Код MCFL (Multicomponent Flows)= NOISEtte-M

МСFL - это исследовательский код, развитие комплекса программ NOISEtte ИПМ им. М.В. Келдыша РАН. Код MCFL создается в парадигме современного программирования в системе совместной разработки SVN(Subversion) кода NOISEtte, т.е. в системе бесконфликтной одновременной удаленной работы над единым кодом множества разработчиков.

Код MCFL наследует основные функциональный возможности присущие NOISEtte, в том числе параллельную эффективность.

Код MCFL находится в процессе развития, проводятся верификационные расчеты на модельных задачах.

Команда кода MCFL: Феодоритова О.Б., Новикова Н.Д., М.М. Краснов, В.Е. Борисов, Б.В. Критский с участием Жукова В.Т., Рыкова Ю.Г и коллектива создателей кода NOISEtte.

Расщепление по физическим процессам

Пример. Уравнение конвекции-диффузии

$$u_t = \mathbf{c} \cdot u_x + (d \cdot u_x)_x$$
 $c = c(x), d = d(x)$

Аппроксимация по пространству:

$$u_t = C_h u + D_h u \; .$$

Алгоритм расчета шага $t - > t + \tau$: гиперболический этап $u_t = C_h u$ параболический этап $u_t = D_h u$ Проблема точности: С и D – квадратные неперестановочные матрицы (если с, d не константы)

$$\begin{aligned} \frac{du}{dt} &= (C+D)u, \quad t \to t+\tau \\ 1. v(t) &= u(t) & \frac{dv}{dt} = Dv \implies v(t+\tau) = e^{D\tau}v(t) \\ 2. w(t) &= v(t+\tau), \quad \frac{dw}{dt} = Cw \implies w(t+\tau) = e^{C\tau}w(t), \\ u(t+\tau) &= e^{C\tau}w(t) = e^{C\tau}e^{D\tau}u(t) \\ \end{aligned}$$
Toчное решение: $U(t+\tau) = e^{(C+D)\tau}u(t)$
Погрешность схемы $O(\tau), m.к. \quad C \cdot D \neq D \cdot C$
 $\delta = e^{(C+D)\tau} - e^{C\tau}e^{D\tau} = 0.5[D \cdot C - C \cdot D]\tau^2 + \dots$
Того, есть проблема сохранения стационарного решени

Кроме того, есть проблема сохранения стационарного решения. Для нелинейных задач расщепление может приводить к разным решениям.

Новые алгоритмические элементы

- Гиперболический этап схема Годунова с точным решением задачи Римана для многокомпонентной смеси (Ю.Г. Рыков, В.Е. Борисов)
- Параболический этап оригинальная явноитерационная схема LINS, основанная на многочленах Чебышёва. Не использует эмпирические параметры. Обобщение схемы LI-M. Число итераций:

$$v = 2p - 1, \quad p = \left\lceil \frac{\pi}{4} \sqrt{\tau \lambda_{max} + 1} \right\rceil, \quad \lambda_{max} = \left\| D_h \right\|$$

р - степень многочлена Чебышева

Схема LI-М для параболических уравнений

$$u_t + L u = f$$
 in $G = [t_0; T] \times \Omega$
 $-(\kappa \nabla u) \cdot n = \alpha \ u + \gamma$ on Γ
 $\Omega \subset \mathbb{R}^3$, n - внешняя нормаль к Γ
 $u(t_0, x, y, z) = u_0(x, y, z)$
 $L u = -\nabla \cdot (\kappa \nabla u) + a_0 \cdot u + f$

Дискретизация по пространству и времени

$$\Omega_{h,\tau} = \Omega_h \times \Omega_\tau$$

$$\Omega_{\tau} = \{t_{j}, \ 0 \le j \le J, \ t_{J} = T\}, \ \tau > 0: \ \tau_{j} = t_{j+1} - t_{j}$$

 $\Omega_{h} = \{ x_{n} \in \Omega, \ 0 \le n \le N \}, \ h \sim N^{1/3}.$

Пространство U_h , $L_2(\Omega_h)$.

Полудискретная схема:

$$\frac{\partial u}{\partial t} + L_h \cdot u = f.$$

 L_h - самосопряж. неотриц.опр. оператор

Схемы интегрирования $u_t + L_h u = f_h$

$$L_{h} = L_{h}^{*} \ge 0 \qquad sp(L_{h}) \subset [0; \lambda_{\max}]$$

$$u_j \equiv u(t_j) \in U_h, \quad t_j \to t_{j+1} = t_j + \tau$$

Явная схема: $\frac{u_{j+1} - u_j}{\tau} + L_h \cdot u_j = f_j$

Неявная схема:

$$\frac{u_{j+1} - u_j}{\tau} + L_h \cdot u_{j+1} = f_j$$

Явно-итерационная схема LI-М на основе многочленов Чебышева $\|L_h\| \leq \lambda_{max}, \quad p = \left[\frac{\pi}{4}\sqrt{\tau \lambda_{max} + 1}\right]$

Многочлен Чебышева степени $p: T_p(x) = \cos(p \operatorname{arccos} x), -1 \le x \le 1$

Нули
$$\beta_i = \cos \frac{2i-1}{2p}\pi$$
, $i = 1, ..., p$

$$a_{m} = \frac{\lambda_{\max}}{1 + z_{1}} (z_{1} - \beta_{m}), \ m = m(i), \ \beta_{1} = z_{1} = \cos(0.5\pi/p) \Longrightarrow a_{1} = 0$$

v = 2p - 1, итер. параметры: $\{b_1, ..., b_q\} \equiv \{a_p, ..., a_2, a_p, ..., a_2, a_1\}$ Схема: $y^0 = u_j$,

$$\underline{y^{m}} = \frac{1}{1 + \tau b_{m}} [u_{j} + \tau b_{m} \cdot y^{m-1} - \tau (L_{h} \cdot y^{m-1} - f_{h})], \quad u_{j+1} = y^{\nu}$$

Операторная запись схемы LI-M

$$y^{n+1} = S^+ y^n + \tau Q^n, \quad t_n \to t_{n+1} = t_n + \tau$$

 $S^+ = (I - G_p^2) (I + \tau L_h)^{-1}$
 $G_p (L_h) = H_p (L_h) / H_p (-1/\tau)$
 $H_p (\lambda) = \prod_{m=p}^{m=1} (a_m - \lambda) \equiv T_p (z_1 - (z_1 + 1) \lambda / \lambda_{max})$

*G*_p – нормированный многочлен Чебышева

Качество схем: спектры операторов перехода

$$\begin{split} \lambda \in & \begin{bmatrix} 0; \ \lambda_{max} \end{bmatrix} = \mathrm{sp} \left(L_h \right) \\ \text{Явная схема:} \qquad & \rho_{\exp}(\lambda) = 1 - \tau \lambda \\ \text{Неявная схема:} \qquad & \rho_{imp}(\lambda) = \frac{1}{1 + \tau \lambda} \\ \text{Схема LI-M} \qquad : \qquad & \rho_{LI-M}(\lambda) = \frac{1 - G_p^2(\lambda)}{1 + \tau \lambda}, \quad \left| G_p \right| \leq 1 \end{split}$$

Качество схем: спектры операторов перехода по сравнению с точным $\exp(-\tau \cdot \lambda)$

Математическая модель RANS (в отсутствии горения)

+ Модель турбулентности (Ментера, ...)

 $\boldsymbol{\tau}_{\mu}, \, \boldsymbol{\tau}_{t}, \, \vec{q}_{\mu}, \, \vec{q}_{t}$ – молекулярная и турбулентная компоненты тензора вязких напряжений и теплового потока соотв.

Многокомпонентные течения реагирующих газов

Хим. состав смеси:

- *N_{sp}* количество компонентов в смеси;
- *N_r* число реакций;

 Y_m – массовая доля компонента сорта $m: \sum_{m=1}^{N_{sp}} Y_m = 1$. Парциальная плотность $\rho_m = \rho Y_m$ \vec{u} – среднемассовая скорость: $\rho \vec{u} = \sum_{m=1}^{N_s} \rho_m \vec{u}_m$ Диффузионный поток:

$$\vec{J}_m =
ho_m (\vec{u}_m - \vec{u}) \sim
ho D_m grad Y_m$$
, $\sum_{m=1}^{N_{sp}} \vec{J}_m = 0$.
УРС : $p = \left(\sum_{m=1}^{N_{sp}} Y_m R / W_m \right)
ho T$, W_m – молярная масса

NI

Уравнения балансов хим. компонентов смеси в диффузионном приближении

$$\frac{\partial \left(\rho Y_{m}\right)}{\partial t} + \frac{\partial \left(\rho u_{j} Y_{m}\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\rho D_{m} \frac{\partial Y_{m}}{\partial x_{j}}\right] + \dot{\omega}_{m}, \quad m = \overline{1, N_{sp}}$$

Диффузионный поток $\vec{J}_{_m}$ и скорость $\dot{\omega}_{_m}$ изменения компонента т:

$$\vec{J}_m = -\rho D_m \nabla Y_m$$
, $\dot{\omega}_m = W_m \sum_{j=1}^{N_r} v_{j,m} s_j$,

 $v_{j,m}$ – стехиометр. коэфф. компонента *тв* реакции j W_m – молярная масса компонета, s_j – скорость реакции j:

$$\mathbf{s}_{j} = \mathcal{Q}(Y) \left\{ k_{fj} \prod_{t=1}^{N_{sp}} \left[\frac{\mathcal{Q}Y_{t}}{W_{t}} \right]^{\alpha_{tj}} - k_{bj} \prod_{t=1}^{N_{sp}} \left[\frac{\mathcal{Q}Y_{t}}{W_{t}} \right]^{\beta_{tj}} \right\}$$

$$lpha_{_{tj}},\ eta_{_{tj}}$$
 – степени компонента t , $k_{_{fj}}$,

*k*_{bi} – константы скорости реакции

Химическая кинетика

Скорости изменения молярно-объемных концентраций - источник в уравнениях диффузии компонентов определяются в каждой ячейке сетки из решения нелинейной жесткой системы обыкновенных дифференциальных уравнений:

$$\frac{dY}{dt} = F(T, Y)$$

Здесь функция F зависит от скоростей реакций.

Схема интегрирования LINS для уравнений Навье-Стокса $\frac{\partial U}{\partial t} + \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3} = 0,$ $U = (\rho, \rho u_1, \rho u_2, \rho u_3, E)^T, E = \rho (e + 0.5 u^2)$ $F_{\mu}(U) = F_{\mu}^{conv}(U) + F_{\mu}^{\mu}(U) + F_{\mu}^{\lambda}(U)$ Конвективный, вязкий и тепловой потоки: $F_{k}^{conv}(U) = u_{k}U + (0, p \delta_{k1}, p \delta_{k2}, p \delta_{k3})$ $F_{k}^{\mu}(U) = -(0, \tau_{k1}, \tau_{k2}, \tau_{k3}, 0)^{T}$ $F_{k}^{\lambda}(U) = -(0, 0, 0, 0, u_{1}\tau_{k1} + u_{2}\tau_{k2} + u_{3}\tau_{k3} + q_{k})^{T}$

Схема LINS для уравнений Навье-Стокса

$$\begin{aligned} \frac{dU}{dt} + F^{conv}(U) + F^{\mu}(U) + F^{\lambda}(U) &= 0 \\ Pacuļenлениe : t_n - > t_{n+1} = t_n + \tau_{conv} \\ Funepболика : схема Годунова \\ \frac{\overline{U} - U^n}{\tau_{conv}} + F^{conv}(U^n) &= 0 \\ Pesyльmam : \\ \overline{U} &= (\overline{\rho}, \, \overline{\rho} \, \overline{u}_1, \, \overline{\rho} \, \overline{u}_2, \, \overline{\rho} \, \overline{u}_3, \, \overline{E})^T, \end{aligned}$$

 $\overline{E} = \overline{\rho} \left(\overline{e} + 0.5 \,\overline{u}^2 \right)$

Параболический этап I, вязкость

Расщепление:
$$t_n \rightarrow t_{n+1} = t_n + \tau_{conv}$$

 $H^{conv} = (\bar{\rho} \, \bar{u}_1, \, \bar{\rho} \, \bar{u}_2, \, \bar{\rho} \, \bar{u}_3)^T$
Предиктор (неполный LINS):
 $\tilde{U}^n = (\bar{\rho}, \, \bar{\rho} \, \tilde{u}_1, \, \bar{\rho} \, \tilde{u}_2, \, \bar{\rho} \, \tilde{u}_3, \, \tilde{E})^T, \, \tilde{E} = \bar{\rho} \left(\bar{e} + 0.5 \, \tilde{u}^2 \right)$
Корректор:

$$\frac{H^{n+1}-H^{conv}}{\tau_{conv}}+F^{\mu}(\tilde{\boldsymbol{U}}^{n})=0.$$

Результат: $H^{n+1} = (\bar{\rho}\,\overline{\bar{u}}_1, \,\bar{\rho}\,\overline{\bar{u}}_2, \,\bar{\rho}\,\overline{\bar{u}}_3)^T, \,\overline{\bar{E}} = \bar{\rho}\left(\bar{e} + 0.5\,\overline{\bar{u}}^2\right)$ Предиктор + Корректор = LINS Параболический этап II, теплопроводность *Расщепление*: $t_n - > t_{n+1} = t_n + \tau_{conv}$ Уравнение энергии:*скорость известна* $\overline{E} = \overline{\rho} \left(\overline{e} + 0.5 \overline{\overline{u}}^2 \right)$ Предиктор (неполный LINS):

$$\tilde{\boldsymbol{U}}^{n} = (\bar{\rho}, \, \bar{\rho} \, \overline{\bar{u}}_{1}^{T}, \, \bar{\rho} \, \overline{\bar{u}}_{2}^{T}, \, \bar{\rho} \, \overline{\bar{u}}_{3}^{T}, \, \tilde{\boldsymbol{E}}^{T})^{T}, \, \tilde{\boldsymbol{E}}^{T} = \bar{\rho} \left(\tilde{\boldsymbol{e}}^{T} + 0.5 \, \overline{\bar{u}}^{T}^{2} \right)$$

Корректор:

$$\frac{E^{n+1} - \overline{E}}{\tau_{conv}} + F^{\lambda} \left(\tilde{\boldsymbol{U}}^{n} \right) = 0$$

Результат:
$$\overline{\overline{E}} \equiv E^{n+1} = \overline{\rho} \left(\overline{\overline{e}} + 0.5 \overline{\overline{u}}^2 \right)$$

Предиктор + Корректор = LINS

Схема расщепления в многокомпонентном случае

$$U \equiv \rho \Big(1, u_1, u_2, u_3, E, k, \omega, \Big\{ Y_m, m = 1, ..., N_{sp} \Big\} \Big)$$

Разностная схема:

$$rac{\partial}{\partial t}U + C_h(U) = D_h(U)$$

 $C_h(U)$ – нелинейный конвективный оператор
 $D_h(U)$ – нелинейный диффузионный оператор
Явная схема : (ограничение на шаг $au \sim h^2$)
 $rac{U^{n+1} - U^n}{ au} + C_h U^n = D_h U^n$

Расщепление: $au \sim au_{ m cov} \sim h$

Гиперболический этап – схема Годунова с точным решением задачи Римана для многокомпонентной смеси (Ю.Г. Рыков, В.Е. Борисов)

Параболический этап: вязкость, теплопроводность, диффузия компонентов смеси

$$\frac{\overline{\boldsymbol{U}}^{n+1}-\boldsymbol{U}^n}{\tau}+\boldsymbol{C}_h\,\boldsymbol{U}^n=0$$

$$\frac{U^{n+1}-\overline{U}^{n+1}}{\tau}=D_h\,\tilde{U}^n$$

Сумма этапов:

$$\frac{U^{n+1}-U^n}{\tau}+C_hU^n=D_h\tilde{U}^n$$

Примера расчетов. NS-Eqns Расчет I. Тепловая конвекция:

(Полежаев В.)

periodic

U=0

T=1

 $\rho=1$

U=0

T=1

U=0

T=10

Динамика плотности (слева) и давления (справа) ²⁴

Расчет 2. Сверхзвуковое высокотемпературное течение в канале (Башкин В.А., Егоров И.В.) NS-Eqns

Шлирен плотности

Сравнение с явной схемой: вычислительная эффективность схемы LINS выше и при **h → 0** ее преимущество многократно увеличивается

Сверхзвуковое течение в плоском канале переменного сечения. Установление. Сравнение схем.

Сетка 16 000, Т=150

	Неявная схема	Явная схема $k_{CFL+D} = 0.5$	LINS, $p = 4 \div 5$ $k_{CFL} = 0.5$
Число шагов	136 364	587 356	136 364
$ au_{aver}$	$1.1 \cdot 10^{-3}$	$2.6 \cdot 10^{-4}$	$1.1 \cdot 10^{-3}$
Время счета, сек	6 300	6 695	3 000
Точность, норма невязки	$8.5 \cdot 10^{-6}$	$8.5 \cdot 10^{-6}$	$2.6 \cdot 10^{-6}$

Акустические волны на диффузионной

границе двух газов

 $p_0 = 1 \ amm, \ T_0 = 850 \ K, скорости звука: O_2 - 550 \ m/c \ , H_2 - 2200 \ m/c$

Скорость и концентрации водорода: а) левая волна и зона смешения б) правая волна и зона смешения в) зона смешения

28

Профили скорости на разных сетках: a) во всей области и в зоне интерфейса, б) в окрестности левой и правой акустических волн

29

Профили температуры и концентрации водорода в зоне интерфейса

Заключение

Схема LINS расчета многокомпонентных химически реагирующих сред имеет следующие особенности :

- конвекция и диссипативные процессы (вязкие, теплопроводные, диффузионные) реализуются явными и явно-итерационными алгоритмами соответственно.
- схема LINS обеспечивает выполнение законов сохранения, эффективна в параллельной реализации.

- Жуков В.Т., Феодоритова О.Б., Новикова Н.Д. Об одном подходе к интегрированию по времени системы уравнений Навье-Стокса. // ЖВМ и МФ. 2020. Т. 60. №2.
- В.Т. Жуков, О.Б. Феодоритова, Н.Д. Новикова, А.П. Дубень. Явноитерационная схема для интегрирования по времени системы уравнений Навье-Стокса // Матем. моделирование, 2020, Т. 32, № 4, с. 57-74
- 3. В.Т. Жуков, О.Б. Феодоритова, А.П. Дубень, Н.Д. Новикова. Явное интегрирование по времени уравнений Навье–Стокса с помощью метода локальных итераций // Препринты ИПМ им. М. В. Келдыша, 2019, №12, 32 с
- *4. Жуков В. Т.* О явных методах численного интегрирования для параболических уравнений // Матем. мод. 2010. Т. 22. № 10. С. 127–158
- 5. MacNamara, Shev & Strang, Gilbert. (2016). Operator Splitting. doi: 10.1007/978-3-319-41589-5_3.
- 6. Марчук Г.И. Методы расщепления. М.: Наука, 1988.

СПАСИБО за внимание